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Abstract
Collecting answers to open-ended questions is essential for many applications ranging from
business through influencer finding to science through document mining. For instance,
collecting the names of social influencers is useful for brand marketing and opinion mining.
Another example of an open-ended task is the extraction of justifications from documents
for topic classification, which is helpful in literature review and contextual search. Many
efforts have been dedicated to automatically curate such a data through machine learning
(ML) models. However, these methods have a limited performance since responding to open-
ended questions requires intuition, domain knowledge, and reasoning abilities, which are
still missing in state-of-the-art ML methods. Moreover, those models require large-scale and
high-quality annotations, whose collection is a long and laborious process. Crowdsourcing
provides a cost-effective way to answer open-ended questions in a short amount of time.
Furthermore, human annotators on crowdsourcing platforms have diverse skill sets, which
allow to collect diverse results. Nonetheless, challenges arise since the answers supplied by
workers can be prone to errors. Therefore, it is crucial to design solutions to ensure the quality
of open-ended crowdsourced data.

This thesis proposes human-AI collaborative approaches to curate —collect, and clean—
open-ended data. Overall, our frameworks comprehend human computation and AI model
components that interact with each other. In the human computation component, we model
workers’ performance and optimize their involvement in open-ended data collection to mini-
mize the cost and maximize the data quality. While in the AI model component, we leverage
the task’s and answers’ features in addition to the worker model to learn the quality of their
answers. The human computation component and the AI model are updated iteratively,
allowing their learning processes to benefit from each other until an agreement on the quality
of the answers is reached. Thus, the interaction between the human computation component
and the AI model is bidirectional, which is fundamental to ensuring the effectiveness of the
human-AI team.

At the technical level, we design human-AI frameworks to collect and clean open-ended data.
In the first framework, we integrate answers’ properties and workers’ reliability to aggregate the
collected open-ended answers. We model the answer’s quality as dependent on the answer’s
features and workers’ reliability and derive a variational inference algorithm with efficient
updating rules to learn our framework’s parameters. We compare our framework with existing
methods for finding social influencers and show that it substantially improves the state of
the art by 8.44% accuracy. In the second framework, we propose an active learning approach
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Abstract

to evaluate open-ended answers. We estimate the model’s uncertainty about the quality of
open-ended answers and route the most uncertain ones to peers for grading. We then combine
the model’s estimation and peer grading within a Bayesian framework to improve the model’s
learning. We apply our method in the scholarly domain where the open-ended answers are in
this context, the scholarly reviews, and estimate their conformity to conference standards. We
show that our framework outperforms existing methods by 10.85% accuracy. Both frameworks
achieve high performance, yet, end-users might reject their results for lack of transparency.
Consequently, it becomes essential to provide explainable results. We do so by developing a
new explainable method that integrates workers’ justifications to infer answers’ quality. The
proposed method incrementally updates the weights of an attention-based model by learning
from human justifications while considering the workers’ reliability. Extensive validation on
real-world datasets for topic classification shows that our framework significantly improves
the state of the art in terms of explainability and accuracy.

We consider the methods introduced in this thesis as a step towards better collaboration
between machine learning and human computation. Our work establishes principled opti-
mization algorithms that allow the machine learning model’s parameters to be updated using
worker’s modeling and vice-versa. The developed methodologies can be used as a foundation
to build more interpretable methods and provide explanations for both their learning process
and results. We envision that crowdsourced open-ended data curation can establish a new
research direction to solve complex cognitive tasks and allow workers to “learn, not just earn”
through these tasks.

Keywords: Human-AI, Data curation, Variational Inference
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Résumé
La collecte de réponses à des questions ouvertes est essentielle pour de nombreuses applica-
tions allant du secteur commercial (recherche d’influenceurs) au secteur scientifique (analyse
de documents). Par exemple, la collecte de noms d’influenceurs sociaux est utile pour le
marketing et l’exploration d’opinions. Un autre exemple de tâche ouverte est l’extraction de
justifications à partir de documents pour la classification des thématiques, ce qui est utile pour
l’analyse de documents et la recherche contextuelle. De nombreux efforts ont été consacrés à
l’extraction automatique de ces données à l’aide de modèles d’apprentissage automatique. Ce-
pendant, ces méthodes ont des performances limitées car répondre à des questions ouvertes
nécessite de l’intuition, une connaissance du domaine et des capacités de raisonnement,
qui font encore défaut dans les méthodes d’apprentissage automatique les plus récentes. En
outre, ces modèles nécessitent des annotations de grande qualité et à grande échelle, dont la
collecte est longue et laborieuse. Le crowdsourcing offre un moyen rentable pour répondre
aux questions ouvertes en peu de temps. De plus, les participants sur les plateformes de
crowdsourcing ont des compétences diverses, ce qui permet de collecter des résultats variés.
Néanmoins, des défis se posent car les réponses fournies par les participants peuvent être
sujettes à des erreurs. Par conséquent, il est crucial de concevoir des méthodes pour assurer la
qualité des données ouvertes issues du crowdsourcing.

Cette thèse propose des approches collaboratives humain-IA pour la “curation”—collecte et
correction— de données ouvertes. Globalement, nos frameworks comprennent des compo-
sants de calcul humain et de modèle d’IA qui interagissent les uns avec les autres. Dans le
composant de calcul humain, nous modélisons la performance des participants et optimisons
leur implication dans la collecte de données ouvertes pour minimiser le coût et maximiser la
qualité des données. Dans la composante modèle d’IA, nous exploitons les caractéristiques
de la tâche et des réponses en plus du modèle du participant pour apprendre la qualité de
leurs réponses. Le composant de calcul humain et le modèle d’IA sont mis à jour de manière
itérative, permettant à leurs processus d’apprentissage de bénéficier l’un de l’autre jusqu’à ce
qu’un accord sur la qualité des réponses soit atteint. Ainsi, l’interaction entre le composant
de calcul humain et le modèle d’IA est bidirectionnelle, ce qui est fondamental pour garantir
l’efficacité de l’équipe humain-IA.

Au niveau technique, nous concevons des frameworks humain-IA pour nettoyer et évaluer les
données ouvertes. Dans le premier framework, nous intégrons les propriétés des réponses et
la fiabilité des participants pour agréger les réponses ouvertes. Nous modélisons la qualité
de la réponse comme dépendant des caractéristiques de la réponse et de la fiabilité des par-
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ticipants et nous dérivons un algorithme d’inférence variationnelle avec des règles de mise
à jour efficaces pour apprendre les paramètres de notre framework. Nous comparons notre
framework aux méthodes existantes sur la recherche d’influenceurs sur les réseaux sociaux
et montrons qu’il améliore considérablement l’état de l’art de 11,5 % d’AUC. Dans le second
framework, nous proposons une approche d’apprentissage actif pour évaluer les réponses
ouvertes. Nous estimons l’incertitude du modèle quant à la qualité des réponses ouvertes et
transmettons les réponses les plus incertaines à des experts pour qu’ils les évaluent. Nous
combinons ensuite l’estimation du modèle et la notation par les experts dans un framework
bayésien pour améliorer l’apprentissage du modèle. Nous appliquons notre méthode dans le
domaine scientifique où les réponses ouvertes sont dans ce contexte, les revues scientifiques,
et estimons leur conformité aux normes de conférences. Nous montrons que notre frame-
work surpasse les méthodes existantes par une exactitude de 11,6 %. Ces frameworks sont
performants, mais les utilisateurs peuvent rejeter leurs résultats par manque de transparence.
Par conséquent, il est essentiel de fournir des résultats explicables. Nous le faisons en déve-
loppant une nouvelle méthode explicable qui intègre les justifications des participants dans
l’inférence de la qualité des réponses. La méthode proposée met à jour de façon incrémentale
les pondérations d’un modèle basé sur l’attention en apprenant des justifications humaines
tout en considérant la fiabilité des participants. Une validation approfondie sur des ensembles
de données du monde réel pour la classification de thématiques montre que notre framework
améliore significativement l’état de l’art en termes d’explicabilité et d’exactitude.

Nous considérons les méthodes introduites dans cette thèse comme une étape vers une
meilleure collaboration entre l’apprentissage automatique et le calcul humain. Notre travail
établit des algorithmes d’optimisation basés sur des principes qui permettent de mettre à
jour les paramètres du modèle d’apprentissage automatique à l’aide de la modélisation du
participant et vice-versa. Les méthodologies développées peuvent être utilisées comme base
pour construire des méthodes plus interprétables et fournir des explications à la fois pour
leur processus d’apprentissage et leurs résultats. Nous pensons que la curation de données
ouvertes par le crowdsourcing peut établir une nouvelle direction de recherche pour résoudre
des tâches cognitives complexes et permettre aux participants "d’apprendre, et pas seulement
de gagner" grâce à ces tâches.
Mots clefs : humain-IA, Curation de Données, Inférence Variationnelle
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1 Introduction

1.1 Open-ended Data Curation

Collecting answers to open-ended questions is important in numerous fields. These questions
could be for instance "name a fashion influencer on social media", "write a review about
the following article", "justify your rating", which require answers in a free-text form that
contain important information cues valuable to many applications. Answers to open-ended
questions are used in the business domain where brands collect influencers’ user accounts
from social media [105, 43, 211], and extract key insights from product reviews [157, 139].
They are also applied in the science domain through language translation [225, 148, 22] and
analyzing scientific documents [207, 96] and even in creative work such as fiction writing [89]
and design ideation [91, 92]. In this thesis, we use open-ended answers and open-ended data
interchangeably to refer to the data collected from open-ended questions.

A lot of effort has been dedicated to curate —collect and clean— open-ended data. Some
lines of research focus on ways to generate them automatically. For example, many machine
learning models have been proposed to automatically translate textual data from one lan-
guage to another [74, 229] or generate summaries of scientific documents [55, 151]. While
considerable progress has been made in this area, existing methods are still far from perfect in
accomplishing these tasks [112, 79]. Moreover, annotation needed to train and evaluate these
models are becoming more and more complex as they require domain-specific textual data.
Collecting such complex annotations is a long and laborious process even for domain experts.
Researchers have been investigating ways to leverage crowds, i.e., a large group of participants,
for creating open-ended data. Humans excel at complex tasks that require cognitive abilities
such as intuition, comprehension, and judgment. In addition, access to a large crowd be-
came easy and possible in a short amount of time, thanks to the emergence of crowdsourcing
platforms.

Using crowd workers to collect free-text annotations has led to the emergence of open-ended
crowdsourcing tasks, which are one of the most popular type of tasks in crowdsourcing plat-
forms [54]. They can be characterized by three main properties: First, their response space can
be large and sometimes infinite because workers provide their answers as free-text and thus,
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Chapter 1. Introduction

they are far less likely to produce identical answers for the same question. Second, a question
in an open-ended crowdsourcing task can have multiple correct answers. For instance, there
can be multiple correct ways to translate a sentence. Third, they usually require more cognitive
effort from workers as they need to reason about the question and generate an answer instead
of simply choosing an option among a finite set of possibilities as in traditional crowdsourcing
settings.

Collecting open-ended answers from crowd workers is valuable for many reasons. First, open-
ended answers are given by a diverse pool of workers, which allows to collect diverse answers
and have an accurate representation of the real world. Second, open-ended tasks can be
combined with Boolean tasks to improve data quality without significantly increasing the
annotation time. For instance, a task where workers are asked to rate a data instance and
justify their rating with free text allows to collect more reliable answers than ratings alone. In
addition, it offers greater transparency for evaluating both workers and their answers without
increasing the task completion time [125]. Third, open-ended answers allow access to more
fine-grained information, such as collecting names of domain-specific influencers, which can
be helpful in several business applications, including brand marketing and recommendation.
Moreover, a lot of studies [223, 130] show the benefit of using fine-grained information as
it allows a model to learn both high-level and complex features and increases its ability to
generalize.

While open-ended crowdsourcing has a clear advantage over using ML to generate open-
ended data automatically, there are challenges to overcome to fully benefit from it. First,
crowds can provide incorrect answers, for example, if they are not motivated or qualified for
the work. Second, open-ended crowdsourcing tasks have different types and levels of difficulty.
Consequently, individual crowds’ performance highly depends on the type of task and its
difficulty. Moreover, unlike Boolean crowdsourcing, where crowd workers are asked to classify
an existing close pool of data instances into predefined classes, open-ended crowdsourcing
results in open-ended pools of answers – often of large size – that were all deemed relevant

Figure 1.1: Example of a worker-answer matrix in open-ended tasks: On the left hand side, the
table represents the answers given by each worker (worker_1 gave answer_2 and answer_5,
worker_2 gave answer_1 and answer_4, etc.). On the right hand side, we map the collected an-
swers to a worker-answer matrix where rows indicate workers and columns indicate answers.

2



1.1 Open-ended Data Curation

by crowd workers. As a result, the worker-answer matrix in open-ended crowdsourcing is
sparse and represent positive-only data instances as illustrated in Figure 1.1. These properties
contrast answers from Boolean crowdsourcing with single-choice or multi-choice questions,
where data instances are provided in advance, and workers assign a label indicating a class.
Thus, one of the main challenges in open-ended crowdsourcing consists in curating data and
filtering incorrect answers.

The problem of curating data in crowdsourcing have been extensively studied over the
years [238]. However, researchers have mainly focused on Boolean tasks where workers
answers are either binary or categorical. For these tasks, a common practice consists of hav-
ing multiple workers answer the same question. For instance, in a sentiment analysis task,
multiple workers are presented with the same document and asked to select the sentiment
it conveys among a set of options (e.g., positive, negative or neutral). Several algorithmic
techniques have been developed to aggregate workers’ answers leveraging mainly worker’s
disagreement. A simple aggregation method is majority voting, where the majority of an-
swers are used as the ground truth. Other aggregation methods [50, 238] build on top of the
expectation-maximization framework of Dawid and Skene [49], where they model the worker’s
performance or the task difficulty to estimate the quality of answers. These solutions rely on
worker’s disagreement which is not sufficient for open-ended answers aggregation.

In this thesis, we propose to address the problem of data curation in open-ended crowdsourc-
ing using human-AI collaborative approaches. Our methods integrate both machine learning
and crowdsourcing to learn from the task’s context and answers’ features while considering
worker’s performance depending on the system’s goal. Overall, these hybrid systems are de-
signed to benefit from the complementary strengths of humans and machines intelligence to
overcome the challenges raised by the problem of data quality in open-ended crowdsourcing
(e.g., sparse and positive-only answers). Such an integration, when carefully designed, has
been shown to achieve better performance than humans or machines working alone and
mitigate many of the limitations of state-of-the-art AI models [84, 198]. In the human-AI
collaborative frameworks we designed along this thesis, the human computation component
and the AI model have different roles in our frameworks. Their respective roles are depicted in
Figure 1.2 and can be summarized as follows:

• Human Computation Component: In our frameworks, the human computation com-
ponent models the workers’ performance and the quality of their answers. When using
workers’ input, we deal with cost and quality challenges, where we need to minimize the
cost while ensuring high data quality. To address this challenge, the human computation
component interacts with the AI model component to optimize workers’ involvement
and identify when and where human input is needed. We do so by updating the AI model
parameters based on the inferred data quality and extracting the most informative data
instances to annotate.

• AI Model Component: The AI component learns the quality of workers’ answers from
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Figure 1.2: Human-AI frameworks: (a) Crowds provide open-ended data that we represent as
a worker-answer matrix, and we use it to model workers’ performance and the quality of their
answers. (b) We extract features from the open-ended answers and use them for training the AI
model. (c) We update the AI model parameters based on the estimated answer’s quality from
the human computation component. (d) AI model evaluates the quality of open-ended data,
and the worker’s performance model is updated accordingly. (e) We iterate between steps (c)
and (d) until an agreement is reached on the worker’s performance and the answer’s quality.
(f) We evaluate the results and seek additional crowd input if the framework is uncertain about
the quality of answers.

the answers’ features and expert labels (if available) and estimates the quality of unseen
data instances. We explore several strategies to improve its performance by updating
its parameters based on the human computation component. We then update the
human computation component based on the learned AI model, where we update
the workers’ performance model and the answer’s quality model using the estimated
answers’ quality.

Our work contributes to the field of human-AI collaboration paradigm by proposing systems
where the interaction between the human computation and the AI model is bidirectional,
which is fundamental to ensure the effectiveness of the human-AI team. Since the tasks tackled
within this thesis are intrinsically complex and hard for machines to process automatically, it
was important to identify how and when to use the human input and simultaneously ensure
that the model’s behavior meets human’s expectation by updating the model’s parameters. In
establishing such collaborative systems, we pave the way for better collaboration between

4



1.2 Research Questions

machine learning and human computation. We foresee the developed frameworks as a first
step towards better human-AI systems where they can for instance notify each other in case of
uncertainty and easily interpret and rectify each other’s learning. In what follows, we discuss
in more detail the research questions and the contributions addressed in this thesis.

1.2 Research Questions

This thesis aims at investigating, designing and evaluating methods that effectively and ef-
ficiently curate data in open-ended crowdsourcing. The curation pipeline for open-ended
answers comprehends multiple aspects including 1) collecting answers from workers and
aggregating them by inferring the correct ones, 2) reducing workers’ efforts when evaluating
open-ended answers, and 3) leveraging the aggregated answers to enhance a model’s explain-
ability. In this thesis, we develop frameworks that contribute to each one of these aspects.
Specifically, we aim to answer the following research questions:

• RQ1: How can we aggregate open-ended answers?

• RQ2: How can we learn from external sources for truth inference in open-ended tasks?

• RQ3: How can we jointly learn from a peer grading mechanism and a machine learning
model the evaluation of open-ended answers?

• RQ4: How can we minimize workers’ efforts in open-ended answers evaluation?

• RQ5: How can we effectively learn from humans’ justification and enhance an AI model’s
explainability?

Overall, this thesis pushes the understanding of the open-ended crowdsourcing field and
proposes novel human-AI systems where we seek to deeply integrate human and machine
intelligence within unified frameworks.

1.3 Summary of the Contributions

In the following, we give a short overview of our main contributions and list the associated
conference papers that were published to address the research questions introduced above.

1.3.1 Open-ended answers aggregation

We first tackle RQ1 and RQ2, where we address the problem of open-ended answers aggre-
gation by leveraging external features to infer the truth. We do so by modeling the answers’
quality as dependent on their features and the workers’ reliability. Our approach is a Bayesian
framework that integrates machine learning with crowdsourcing and simultaneously esti-
mates workers’ performance and the quality of answers. We formalize the learning processes
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of the machine learning and the Bayesian models with a variational inference method. The
advantage of using variational inference in OpenCrowd is twofold: First, it allows us to have
a principled optimization algorithm for updating the parameters of both our probabilistic
model and a machine learning model until an agreement on the answers’ quality is reached.
Second, it allows us to model worker’s reliability as a continuous variable, which gives us a
measure of confidence in estimating worker’s reliability.

Our work, OpenCrowd, focuses on data enumeration tasks for influencer finding where
workers name social media accounts of candidate influencers. The developed aggregation
mechanism infers the real influencers based on both worker’s reliability and the features
extracted from social media. This work was published as follows:

Arous, Ines, Jie Yang, Mourad Khayati, and Philippe Cudré-Mauroux. "OpenCrowd: A human-
AI collaborative approach for finding social influencers via open-ended answers aggregation."
In Proceedings of The Web Conference 2020.

1.3.2 Peer grading for open-ended answers’ evaluation

Next, we address RQ3 and RQ4 by investigating how to optimize workers’ efforts in evaluating
open-ended answers. We propose an active learning approach where we estimate a machine
learning model uncertainty about its evaluation of open-ended answers and route the most
uncertain data instances to peers for grading. Our approach is a Bayesian framework that
integrates a machine learning model with peer grading to collaboratively assess multiple crite-
ria in open-ended answers. We model in our framework answers’ quality, grader’s reliability
and bias with continuous variables to quantify the accuracy of our estimation. Similarly to
OpenCrowd, we use a variational inference method to update both model parameters and
graders’ reliability incrementally.

We apply our method to the scholarly domain, where in this context, the open-ended answers
are the scholarly reviews and aim to assess their conformity to conference standards based
on a set of criteria. Fairness is critical in such a domain; therefore, our human-in-the-loop
system allows us to augment the machine learning model’s prediction with experts’ input and
consider experts’ bias in grading. Overall, the proposed approach evaluates the conformity of
reviews based on extracted features and grades assigned by experts while considering their
bias. Our approach was published as follows:

Arous, Ines, Jie Yang, Mourad Khayati, and Philippe Cudré-Mauroux. "Peer grading the peer
reviews: a dual-role approach for lightening the scholarly paper review process." In Proceedings
of the Web Conference 2021.
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1.3.3 Enhancing Model’s explainability with open-ended answers

This work tackles RQ5 and investigates ways to learn from human justification to improve the
model’s explainability. We focus on a particular type of machine learning model: attention-
based models [221]. These models assign a distribution to the input units that supposedly
reflect their importance. However, recent studies show that the assigned distribution does not
correlate with human judgment [78]. Therefore, we propose a framework named “MARTA"
that simultaneously learns from workers’ labels and justification and trains an attention mech-
anism such that human justification is aligned with the model’s explanation. MARTA iterates
between updating workers’ performance and the model’s learning process by modifying the
attention distribution based on human rationales.

We apply our method to classify Wikipedia articles and product reviews according to their
topic. In these tasks, workers annotate a text and highlight relevant pieces justifying their
annotation. Our framework injects workers’ justification into model learning and improves
its performance in terms of classification and explainability. This method was published as
follows:

Arous, Ines, Ljiljana Dolamic, Jie Yang, Akansha Bhardwaj, Giuseppe Cuccu, and Philippe
Cudré-Mauroux. "Marta: Leveraging human rationales for explainable text classification." In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. 2021.

1.3.4 Additional contributions

In this thesis, we address aspects related to the problem of curation in textual data collected
through open-ended questions. Data inconsistencies do not appear only in textual data, but
are also prevalent in other types of data. For instance, real-world time series are collected
through sensors and often contain blocks of missing values due to some failure or irregular
time intervals. Data curation is then needed to recover the missing blocks so that further
analysis can be conducted on the time series. In this context, we contribute to a series of
projects to address the problem of data curation in time series.

In a first contribution in the time series field, we design a tool named RecovDB, a relational
database system enhanced with advanced matrix decomposition algorithm for missing block
recovery in time series. We tightly integrate the recovery algorithm with a relational database
management system MonetDB to minimize the data conversion and transfer costs. RecovDB
achieves high accuracy by benefiting from different types of correlation between time series
(positive, negative, and mixed), which was not possible in existing recovery systems. The tool
allows users to interact with the system and test different scenarios by recovering multiple
time series at once. It also allows users to vary the size of missing blocks and measure the
accuracy of the recovery in real time. Our work was published as a demo paper as follows:

Arous, Ines, Mourad Khayati, Philippe Cudré-Mauroux, Ying Zhang, Martin Kersten, and
Svetlin Stalinlov. "Recovdb: Accurate and efficient missing blocks recovery for large time series."
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In 2019 IEEE 35th international conference on data engineering (ICDE). IEEE, 2019.

The demo is accessible through this link: http://revival.exascale.info/recovery/recovdb.php

In a follow up work, we design a new online recovery technique to recover multiple time
series streams in linear time. Our recovery technique implements a novel incremental version
of a matrix decomposition technique, namely the centroid decomposition, and reduces its
complexity from quadratic to linear. Our method achieves high performance on real-world
time series with different properties in terms of accuracy and efficiency. Our technique was
published as follows:

Khayati, Mourad, Ines Arous, Zakhar Tymchenko, and Philippe Cudré-Mauroux. "ORBITS:
online recovery of missing values in multiple time series streams." Proceedings of the VLDB
Endowment 14, no. 3 (2020).

1.4 Thesis Outline

We organize the rest of this thesis as follows. Chapter 2 reviews relevant work on human-
AI collaborative approaches and existing methods tackling the problem of data curation in
crowdsourcing. Next, in Chapter 3, we present and evaluate our framework for open-ended
data aggregation. We center our study around a data enumeration task for influencer finding,
where we design a human-AI system that integrates external features from social media for
truth inference. Chapter 4 introduces “Peer Grading Peer Reviews", a model that solicits peers
to assess the quality of open-ended answers based on multiple criteria. Our framework is
designed for the academic domain where open-ended answers are scholarly reviews, and the
goal is to assess their conformity to conference standards. Chapter 5 considers ways to leverage
open-ended answers to enhance models’ explainability. We inject the worker’s justification
expressed as free text in model’s learning to obtain explainable results. We conclude with
Chapter 6, summarizing our main findings, and providing an outlook for future developments
in human-AI.
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2 Background

2.1 Introduction

Crowdsourcing refers to recruiting human workers to solve complex problems that are hard
for machines to perform accurately[68]. Nowadays, crowdsourcing is performed on online
platforms such as Amazon Mechanical Turk (Mturk), Toloka, and Appen. There are two main
parties in these platforms: requesters and crowd workers. Requesters design tasks and post
them on a crowdsourcing platform which is then performed by workers. For instance, a
crowdsourcing task could be identifying the color of a car in a photo. Due to the wide deploy-
ment of these platforms, crowdsourcing became accessible, affordable, and easy. Currently,
these platforms count over 500k workers each, and they are operating in at least 100 coun-
tries [194, 8, 191]. They offer a friendly user interface for requesters with pre-made templates
for various tasks. We distinguish two main types of tasks in crowdsourcing platforms:

• Boolean Tasks: They usually require intuition and commonsense. In Boolean tasks,
a requester prepares a set of data instances and aims to classify them into predefined
categories. They include item comparison, rating, and classification tasks. For example,
a popular Boolean task is sentiment analysis, where workers classify a set of documents
as positive, negative, or neutral according to the sentiment they convey.

• Open-Ended Tasks: They usually require creativity, reasoning, or domain knowledge.
In open-ended tasks, requesters aim to collect complex and unstructured data for jobs
such as text comprehension and translation, where workers provide their answers as
free text. The collected answers in these tasks are unbounded and hence are called
open-ended.

In this chapter, we define open-ended tasks’ properties and discuss efforts related to the
problem of open-ended data curation. Then, we methodologically review existing work
related to the developed frameworks within this thesis. We start by giving some background on
algorithms and systems leveraging human computation, namely human-in-the-loop systems.
Then, we focus on a particular application area of human-in-the-loop systems closely related
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to our work: human AI. Finally, we discuss the state-of-the-art in the "learn from crowds" line
of research.

2.2 Open-Ended Tasks

Open-ended tasks in crowdsourcing require complex annotations that usually cannot be
mapped to categorical variables or single-dimensional ordinal variables. In this type of tasks,
workers answer in a free-form text and are far less likely to produce identical labels for the
same data instance.

We distinguish two categories of open-ended tasks depending on their correct answer space:
finite or infinite. Open-ended tasks with finite number of solutions include image descrip-
tion [12, 73], language translation [225, 148, 22] and phrase extraction [162]. The number
of possible solutions for these tasks can be large but usually finite. These tasks are often
decomposed into a chain of bite-sized subtasks, and requesters can control the quality of
answers by predefining correct answers for some subtasks. For instance, a text translation
task can be decomposed into sentence-by-sentence translation tasks, and requesters can
define a correct translation for some sentences. In this category, we also find tasks with a
unique solution, such as audio transcription [48], arithmetic problems [113, 210] or counting,
where requesters expect a unique solution as a correct answer. These tasks can be mapped to
categorical tasks and evaluated using Boolean truth inference methods [238]. Open-ended
tasks with an infinite number of solutions include writing [189, 89], drawing [138, 114] and
enumerating domain-specific objects [9, 193]. For instance, writing a story has an infinity of
possible correct answers. The answers collected from these tasks reflect the broad knowledge
of crowd workers, which can be insightful in domain-specific applications. In our work, we
focus on the category of open-ended tasks with a very large to an infinite number of solutions.

Curating open-ended answers with an infinite solution space has been mainly studied in the
education field [65, 30, 135] where students solve open-ended problems in the form of a short
answer or an essay. The solutions developed in this area rely mainly on a series of pattern
matching operations such as regular expressions [82] and semantic word matching [47] or
variations of latent semantic analysis [150, 90] to evaluate the answers. Another approach
for evaluating open-ended answers in education consists of using peer assessment [208, 126],
where students grade each others’ answers. In these efforts, there is an assumption that
all students share the same knowledge, which is not the case for workers in crowdsourcing
platforms. Unlike them, the frameworks developed in this thesis model workers’ performance
in evaluating open-ended answers.

A separate line of research in human computation and crowdsourcing has investigated the task
design for motivating workers to improve the quality of collected open-ended answers. For
example, Teevan et al. propose to decompose the task of collaborative writing into sub-tasks
and concatenate the individually written paragraphs into a report. A similar system is devel-
oped by Kim et al., where they propose to write short fiction stories by having workers iterate
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between reflecting on general ideas and decomposing them into low-level tasks. Other systems
[138, 114] assist designers in drawing and sketching ideas by completing their drawings or
generating new sketches. These systems encourage workers to be creative, but the quality
of the collected answers is hard to curate [146]. In our work, we address different aspects of
curating open-ended answers and aim to propose frameworks to collect and clean them for
different downstream tasks.

2.3 Human-in-the-Loop Systems

Human-in-the-loop Systems require human interaction where systems are designed such
that they optimize the integration of human contribution to obtain better and more accurate
results. Many of them are shaped as Games With A Purpose (GWAP), where game designers
leverage the fun incentive to engage crowds into playing a game and, as a side-effect, collect
and annotate data [200]. Early examples include the ESP game [201] and Peekaboom [202],
where players annotate objects in images. Both games help collect data for training computer
vision algorithms. Another popular example is ReCaptcha[203], a security measure used
by websites to prevent automated programs from hacking their system by asking humans
to perform complex tasks for computers, such as transcribing distorted text. The collected
human annotations are then used for digitizing old-printed books. These games helped
collect large data quickly, and therefore, several studies have been investigating ways to use
gamification to solve large-scale problems. For instance, FindItOut [15] is used to extract
relations between concepts and train downstream AI tasks such as commonsense question
answering.

Human-in-the-loop systems have been proposed to solve data-related problems in a variety of
domains including the database domain. Among the first crowd-powered database systems is
CrowdDB [62] proposed in 2011. It is a relational query processing system that uses microtask-
based crowdsourcing to answer queries that can not be processed by database systems nor
search engines alone. The system was used for subjective comparisons where for instance,
workers select the best image for a motivational slide among a set of images, a task relatively
simple for humans yet complex for machines. Since then, many specific database problems
have been addressed using human-in-the-loop systems, where some have investigated how
to implement crowd-based operators such as sorts [124], joins [124, 205] and filters [144],
while others were application-oriented such as systems for outlier detection [36], entity reso-
lution [213] and data integration [108]. Another line of work deals with task assignment where
several strategies have been developed to optimally assign tasks to workers. For example,
QASCA [235] incorporates evaluation metrics into assignment strategies. Other assignment
systems [59, 236] consider workers’ previous answers and the task domain to match workers
with the available tasks.

Another area where human-in-the-loop systems have been extensively used is information
retrieval. Systems like CrowdSearcher [29] have been used to obtain answers on domain-
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specific topics by using crowds on social networks. Other systems were developed to support
complex search queries such as DataSift [145] for images and videos queries where workers
contribute to the system by reformulating non-textual queries to textual ones and ensuring
the retrieved answers are correct, ShapeSearch [177] for searching patterns in large datasets
described by workers in natural language queries and DynSP [77] for decomposing complex
questions into simple inter-related ones.

A particular application area of human-in-the-loop systems is artificial intelligence where
a new field called “Human-AI collaboration" has emerged [198]. Since the frameworks de-
veloped within this thesis are closely related to the human-AI field, we discuss in detail the
advances established in this area in the next section.

2.4 Human-AI Collaborative Approaches

“Human-AI collaboration" [80, 31, 100], also named “human-AI teaming" [239, 231, 16], or
“human-AI hybrid systems" [84, 67] aims to have humans and AI closely collaborating and
leverage their complementary strengths to solve tasks that are complex for AI models or
humans alone [70, 198]. The existing human-AI systems can be broadly classified into two
categories based on the position of human computation in the collaboration pipeline:

2.4.1 Human computation before model training

Before model training, human computation is commonly used for data annotation. Examples
include crowd annotation datasets for natural language processing tasks such as text classifi-
cation [226, 125], question-answering [77, 15] and sentiment analysis [181]. It is also used for
annotating images and videos such as for the ImageNet [52] and the ESP [201] datasets.

Human computation can also be used for feature selection, where human crowd workers
select the most relevant features for the task at hand. These features are often hard to extract
automatically from the raw data and can be very useful to build effective predictive or classifi-
cation models. For instance, Correia and Lecue [46] propose a human-AI framework where
domain experts select relevant features and a reinforcement learning model leverages the
selected features to minimize the model’s loss function. Another approach [240] was proposed
for modeling feature discovery via crowdsourcing by detecting common features in multiple
data instances. Other methods [42, 165] optimize the involvement of humans in the feature
selection process by providing an aggregated view on features to users.

2.4.2 Human computation after model training

After model training, human computation can be leveraged in three main procedures: model
selection, evaluation and debugging. Model selection indicates the procedure in which a
specific AI model can be chosen among a set of candidates according to different evaluation
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metrics. In the literature, we can find several methods where humans collaborate to select
the AI model based on pre-defined criteria. For instance, in [160], crowd workers selected a
classification algorithm among a set of models based on its output and an explanation of its
results on several data instances. Similar ideas have been explored where end-users select a
set of classification models from an ensemble [167] or select the parameters of a model [141]
based on the visualization of their classification results.

Metrics such as accuracy and F1 have been extensively used in order to evaluate AI models.
Recent studies show that they do not necessarily correlate with human perception of model’s
performance and therefore, several strategies have been used to simulate human perception in
order to evaluate AI models. Some of these strategies rely on explicit user’s feedback to evaluate
the model’s performance by reporting their satisfaction [93, 33] or by setting a threshold on
F1 to accept model’s results [127]. Another line of research develop new metrics to reflect
human judgment [168, 41]. For instance, Schuff et al. propose new metrics to reflect human
perception of explainablity in question answering models. Another approach consists in
combining different metrics to reflect human evaluation of model’s results [41].

Another line of human computation and crowdsourcing research focused on investigating
the task design for model’s debugging [14, 172, 98]. For instance, the system proposed in [98]
explains the reasons for the model’s predictions to its end-user, who in turn correct its results by
adding relevant features or removing noisy terms. Such a system allowed users to understand
the model’s functioning better and helped them correct its mistakes. Similarly, other studies
investigated how users can interact with machine learning models to understand how input
features affect the model’s output [95, 45, 14], and distinguish between what the model has
learned correctly and what it has missed [172].

The aforementioned human-AI collaborative approaches consider human computation and
artificial intelligence as disentangled processes. The methods proposed in this thesis provide
ways to deeply integrate human and machine intelligence, where human characteristics (e.g.,
reliability and bias) and model parameters are iteratively inferred in a mutually boosting
manner until the desired result is achieved.

2.5 Learn from Crowds

Our work can also be seen as a development of the “Learn from Crowds" line of research [158,
218, 190], which investigates how to enable machine learning models to learn from noisy
labels. The most challenging problems here are two folds: 1) truth inference from noisy labels,
and 2) model training given noisy labels and the inferred truth.

To address the first problem, a common strategy in crowdsourcing consists in assigning each
data point to multiple workers and then use an aggregation algorithm to infer the truth taking
into account worker’s annotation quality. A straightforward approach to address the problem
of truth inference is Majority Voting (MV), which takes the answer given by the majority of
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workers as the truth. However, MV has as a main limitation that all workers are regarded as
equal, independently from their performance. In reality, an experienced worker carefully reads
the instructions and responds to the task, while other workers may randomly answer the task.
Thus, it is important to model worker’s annotation quality. One of the earliest work in this
area can be traced back to Dawid & Skene (D&S) in (1979), where they build an Expectation-
Maximization (EM) framework where they model worker’s performance as a confusion matrix.
Since then, several methods were built on top of the D&S model. For instance, ZenCrowd [50]
adopts a similar EM framework while modeling worker’s performance with a scalar parameter,
which is less expressive than the confusion matrix used in the D&S model but is more robust
for sparse worker-answer matrices. Similarly, Whitehill et al. models worker reliability as a
single parameter and additionally model task difficulty. These methods aim to only infer the
truth from worker’s answers and are used as a pre-processing step before model training.

Among the first methods developed to combine truth inference from noisy labels with training
AI models was Learning from crowds (LFC) [158]. It is an EM framework that estimates the
true label by considering both crowd annotations and the output of a logistic regression
classifier. However, LFC does not consider the dependency between worker’s performance
and task properties. To address that problem, Yan et al. proposed to model worker’s reliability
as dependent on data points properties. A similar approach was proposed by Ma et al. [120]
who developed a joint model that captures the task domain from textual descriptions and
worker reliability from the worker-answer matrix using Gibbs-EM [204]. Li et al. proposed
RAM which models worker’s expertise as their ability to distinguish the label relevance with an
expectation maximization algorithm.

With the rise of deep learning, a lot of effort has been dedicated to enable deep learning
models to learn from crowds [219, 162, 11]. Yang et al. propose a Bayesian framework to learn
annotator’s reliability and train a deep learning model simultaneously. Rodrigues and Pereira
propose a crowd layer that can train deep neural networks end-to-end directly from the noisy
labels of multiple workers using backpropagation. Atarashi et al. propose a generative model
for semi-supervised learning from crowds where they use a deep neural network for repre-
senting the data distribution. Shi et al. address the problem of multi-label semi-supervised
learning from crowds and propose a probabilistic method based on a deep sequential gen-
erative model. Li’ang Yin et al. use the analogy with autoencoders where they use neural
networks as a classifier and a reconstructor, and model inferred labels from crowdsourced
data as latent features. Sabetpour et al. propose AggSLC, which jointly models the workers’
labels and reliability, the machine learning predictions, and the characteristics of a task for
sequential label aggregation. To mitigate the effects of annotator group bias on model train-
ing, Liu et al. proposed GroupAnno an extended Expectation Maximization algorithm that
estimates annotator group bias and update a recurrent neural network simultaneously.

Most of the aforementioned methods rely on computing the exact Bayesian posterior with Ex-
pectation Maximization, which requires to integrate over all latent variables. Such an approach,
while being deterministic, can be computationally infeasible in complex models and large-
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scale applications [227]. To that end, one can use Variational Inference (VI), a method that
makes Bayesian inference computationally efficient and scalable to large data sets [195, 227].
Since its introduction, VI has been used in several domains including crowdsourcing. The very
first work that used variational inference in a crowdsourcing setting was proposed by Liu et al.,
where they developed a belief propagation and a mean field algorithms for truth inference.
Their results show the potential of variational inference as an efficient and effective method
in crowdsourcing if the parameters’ priors are carefully chosen. Moreover, they prove that
variational inference-based methods are a generalization of many existing truth inference
methods such as MV and D&S. However, their proposed method cannot leverage machine
learning to generalize over other data instances. A similar approach [166] was used to estimate
annotators confusion matrices and the probability of each class in a categorical task where
they leverage variational inference for fast convergence. Other methods have used variational
inference for label aggregation in online scenarios [134]. More recently, Kim et al. proposed
two frameworks deepMF and deepBP, alternating variational inference and deep learning to
utilize both the prior of worker behavior and the tasks features.

In the frameworks we have developed within this thesis, we develop variational inference
algorithms that integrate human computation with artificial intelligence models such that
their learning processes benefit from each other. Using variational inference allowed us to
scale to larger datasets than the ones traditionally used in crowdsourcing.

2.6 Conclusion

Human-AI collaborative approaches have been used in several domains. A lot of effort has
been dedicated to exploring how to best leverage human computation for training AI models.
Most of the existing methods suffer from at least one of these two limitations: 1) the human
computation and the AI model training are separated, which might lead to biased results since
the model is unaware of the labeling sources’ accuracy, or 2) they can not deal with large-scale
and complex applications as it is the case with open-ended crowdsourcing. In this thesis, we
address these limitations and propose methods for improving data quality in open-ended
crowdsourcing. In particular, we tackle several aspects of the data curation problem of open-
ended crowdsourcing, including cleaning and evaluating open-ended answers and injecting
them into a model’s learning to improve its explainability.

In the next chapter, we start by addressing the problem of collecting and aggregating open-
ended answers. We focus on finding influencers as an application, where we ask workers to
provide the names of user accounts they consider influencers.
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3 OpenCrowd: A Human-AI Collaborative Ap-
proach for Finding Social Influencers via
Open-Ended Answers Aggregation
Collecting answers to open-ended crowdsourcing tasks is valuable as it allows to collect large-
scale information from a diverse skill set of workers. With thousands of workers participating
in crowdsourcing platforms, the access to a large crowd became easy and cheap. Nonetheless,
workers’ answers are prone to errors due to lack of expertise, knowledge or motivation. To
benefit from the collected answers, we need to aggregate open-ended answers and identify
the correct ones.

To tackle open-ended answers aggregation, we present OpenCrowd, a unified Bayesian frame-
work that seamlessly incorporates machine learning and crowdsourcing. Our framework
bootstraps the learning process using a small number of expert labels and then jointly learns a
feature-based answer quality model and the reliability of the workers. Model parameters and
worker reliability are updated iteratively, allowing their learning processes to benefit from each
other until an agreement on the quality of the answers is reached. We derive a principled opti-
mization algorithm based on variational inference with efficient updating rules for learning
OpenCrowd parameters. We apply our method to find social influencers where workers name
user account of candidate influencers in an open-ended crowdsourcing task. Experimental
results on finding social influencers in different domains show that our approach substantially
improves the state of the art by 11.5% AUC. Moreover, we empirically show that our approach
is particularly useful in finding micro-influencers, who are very directly engaged with smaller
audiences.

3.1 Introduction

Social influence is an important mechanism impacting the dynamics of social networks.
Social influencers are users who regularly produce authoritative or novel content on specific
topics and who can reach and engage a potentially large group of followers. Finding social
influencers has become a fundamental task in many online applications, ranging from brand
marketing [161, 196] to opinion mining [143, 107], expert finding for question answering [159],
minimizing misinformation propagation [182], or analyzing presidential elections [27].
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The task of finding social influencers is challenging due to the complexity in quantifying user
engagement, the subjectivity in perceiving social influence, and the need for expert knowledge
in determining the authenticity of user-generated content. Existing techniques mainly tackle
this problem using supervised machine learning approaches that rely on a training set hand-
labeled by domain experts [43, 105, 211]. While models trained in this fashion are effective at
finding social influencers who are similar to those in the training data, they are intrinsically
limited by the availability of expert labels. These labels are typically very hard to gather. As an
example, our collaboration with the largest European fashion retailer1 reveals that an expert
can only recognize no more than 200 fashion influencers on Twitter over a 3-week period of
time. Finding social influencers is, therefore, a long and usually laborious process even for
domain experts [76].

Figure 3.1: The OpenCrowd framework (a) creates a worker-answer matrix from workers
answers; (b) extracts social features for the Candidate Influencers (i1, . . . , i4); (c) uses the social
features and the expert labels to train an answer quality model and estimate unknown labels;
(d) (E-step) uses both the worker-answer matrix and the labels generated by the answer quality
model to estimate the worker’s reliability and the candidate influencer’s labels; (M-step) uses
the new candidate influencer’s labels (influencer quality) to retrain the answer quality model;
and (e) generates labels for the unlabeled candidate influencers.

Compared to an individual expert, online crowds possess as a whole a broader knowledge
of social influencers in several domains, e.g., fashion, fitness, or information technology. As
an example, while it is generally difficult for an expert to come up with a long list of fashion
influencers in a short period of time, it is much easier to obtain such a list by asking online
workers. Therefore, we advocate a human computation approach that crowdsources the task
of finding social influencers in the form of open-ended question-answering, a popular and
crucially important, yet severely understudied class of crowdsourcing [146]. Specifically, we
consider a task where the crowd is asked to name as many social influencers as possible in a
predefined domain. By aggregating the answers from a large number of crowd workers, we
can identify the identities (e.g., usernames on Twitter) of a large number of social influencers
in an efficient and cost-effective manner.

1Zalando SE: https://research.zalando.com/
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Despite its obvious benefits, aggregating answers from open-ended crowdsourcing campaigns
is challenging: individual crowd workers may only possess fragmented knowledge that is of
low-quality. Unlike Boolean crowdsourcing, where crowd workers are asked to classify an
existing close pool of data instances into predefined classes, open-ended crowdsourcing results
in open-ended pools of answers – often of large size – that were all deemed relevant by crowd
workers. The input data for open-ended answers aggregation is, therefore, a positive-only
worker-answer matrix, where each entry indicates the “given by” relationship between an
answer and a certain worker, as illustrated in Figure 3.1. This comes in contrast to the input
data for aggregating answers from Boolean crowdsourcing, where each entry indicates a class
(e.g., 0 or 1 for the binary case) assigned by a worker to a data instance. As an implication,
existing answers aggregation methods [49, 214, 212, 237], which are designed to leverage the
disagreement between workers’ answers, do not yield good performance for open-ended
answers aggregation (cf. Section 3.5).

To address the problem of open-ended answers aggregation, we introduce a human-AI collab-
orative approach that integrates both machine learning and crowdsourcing for aggregating
open-ended answers. We present OpenCrowd, a Bayesian framework that models the true
label of a candidate influencer as dependent on both the features of the candidate and the
reliability of the workers who named the candidate. To infer the truth, OpenCrowd leverages
a small number of expert labels to bootstrap the inference process. It then jointly learns a
feature-based model for the quality of the answers and the reliability of the crowd workers.
The model parameters and worker reliability are updated in an iterative manner, allowing their
learning processes to benefit from each other until an agreement on answer quality is reached.
The overall learning process is illustrated in Figure 3.1. We formalize such a learning process
with a principled optimization algorithm based on variational expectation-maximization. In
particular, we derive updating rules that allow both model parameters and worker reliability
to be updated incrementally at each new iteration. By doing so, OpenCrowd parameters can
be efficiently learned with little extra computational cost compared to the computational cost
for training a feature-based answer quality model.

To the best of our knowledge, we are the first to adopt a human-AI collaborative approach for
finding social influencers. Our proposed framework is a generic one that can incorporate any
machine learning models with crowdsourcing. Moreover, as it solicits contribution directly
from crowd workers, the framework is effective in finding a particular type of influencers
known as “micro-influencers" [216, 18]. These social influencers are deeply connected to
specific niche audiences, thus are able to effectively deliver messages to a highly relevant
audience. Unlike macro-influencers who have a huge number of followers (e.g., millions),
micro-influencers often have relatively fewer followers, yet they enjoy a more trustworthy
reputation (e.g., higher conversion rate in product promotion) and direct relationship with
them.

In summary, we make the following key contributions:
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• We propose OpenCrowd, a Bayesian framework for finding social influencers through
open-ended answers aggregation;

• We derive an efficient learning algorithm based on variational inference with incremen-
tal updating rules for OpenCrowd parameter estimation;

• We conduct an extensive evaluation on two domains – fashion and information tech-
nology – and show that OpenCrowd substantially improves the state of the art by 11.5%
AUC.

3.2 Related Work

In this section, we first review existing answers aggregation methods applicable for finding
social influencers. Then, we discuss metric and feature-based techniques proposed to solve
this problem.

3.2.1 Answers Aggregation

Influence is defined as “the power of producing an effect on the character or behavior of
someone” (Oxford Dictionary). This concept is intrinsically difficult to quantify especially in a
large scale context. Answers aggregation provides an efficient and cost-effective manner to
identify a large number of social influencers. Methods have been mainly developed in Boolean
crowdsourcing. Typical methods include majority voting [174] and those based on expectation-
maximization (EM), which simultaneously estimate the true labels and parameters related
to the annotation process such as worker reliability and task difficulty [237]. Dawid and
Skene [49] make a seminal contribution by proposing to model the worker’s reliability with
a confusion matrix for answers aggregation. Demartini et al. [50] address a similar problem
while modeling worker reliability as a scalar parameter, which can be less expressive but more
robust for highly sparse worker-answer matrices – as we discuss in our experiments. Whitehill
et al. [214] introduce a similar method yet further propose to model task difficulty in addition
to worker reliability. Closer to our method is LFC proposed by Raykar et al. [158], which models
worker reliability as a latent variable with a prior distribution, thus capable of quantifying
the uncertainty of the inference. Unlike these techniques, our proposed framework further
incorporates existing labels and social features, thus extending the applicability of answers
aggregation to open-ended tasks.

While little work has focused on open-ended answers aggregation [146], some techniques
consider features of answers or tasks for answers aggregation. A seminal work by Welinder
et al. [212] considers the implicit dimensions of worker expertise and task domains and
propose a probabilistic model where such dimensions are modeled as feature vectors of
tasks to be learned from the worker-answer matrix. A similar line of work takes advantage of
explicit task features to learn such dimensions [59, 120, 236]. Ma et al. [120] propose a joint
model that captures the task domain from textual descriptions and worker reliability from
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the worker-answer matrix. Zheng et al. [236] further consider external knowledge bases to
better capture task domains. Fan et al. introduce iCrowd [59], which measures the topical
similarity of tasks by employing topic modeling techniques (e.g., LDA [25]), and leverages such
similarity for a better estimate of worker reliability. A similar idea is investigated by Lakkaraju
et al. [101], which also considers similarity among workers based on their features. All these
works, however, rely on unsupervised topic models or ad-hoc modeling of specific features to
help estimate worker reliability. Our proposed framework is different in that it incorporates
crowdsourcing and supervised models that can consume any features.

Human-AI Collaboration.

Our work is related to the emerging field of human-AI collaboration paradigm arising from the
intersection between human computation and machine learning [198]. Human computation
has been used to enhance machine learning systems by generating the data [237, 219] before
model training, or providing interpretations for model decisions [160] and debugging the
system or the data [137, 220] after model training. Typically, human computation and machine
learning are treated as disentangled processes. Our approach provides a way to deeply inte-
grate human and machine intelligence in a Bayesian framework, where human characteristics
(i.e., reliability) and model parameters are iteratively inferred in a mutually boosting manner
until the decisions from aggregated human answers and those from the model agree with each
other. Our work can be seen as a development of the “learning-from-crowds” line of research
[158, 190, 219], which considers the machine learning problem in the context of noisy labels
contributed by the crowd. Unlike existing work, our framework is generic in that it does not
assume any type of machine learning models, thus is applicable to a wider range of problems
and application domains.

3.2.2 Social Influencer Finding

Existing methods for social influencer finding can be categorized into two classes: metric
and feature-based. Common metrics for identifying social influencers include the number
of followers, the number of mentions, and the ratio of the number of comments/likes to the
number of followers [87, 71]. These metrics are often insufficient to fully capture the degree
of influence because of the difficulty to measure content authenticity and engagement with
audience. The latter dimension, i.e., engagement, has become a key consideration along
with the shift of focus in industry from finding macro-influencers (including celebrities) to
micro-influencers [216, 18].

An alternative approach to finding social influencer is machine learning, which can detect
influencers by weighting a large number of social features. Existing work has considered a
variety of social features including metadata features such as the number of followers and
followees [105, 43], the number of retweets and mentions [35], semantic features such as
the topics of a candidate influencer’s microposts [159, 211], or features derived from user
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behavioral data such as the activeness of a candidate influencer in online activities [2, 105].
In addition to those, several pieces of work consider a specific type of feature, namely the
structure of the social network among the influencers and other online users, to improve
the accuracy in finding social influencers [111, 187, 188, 60, 155, 142]. For instance, Tang et
al. [187, 188] propose to find the influencers as the nodes from which the spread of infor-
mation is maximized. Qiu et al. [155] adopt a deep learning framework where the network
embedding and some user-specifc features are fed into a deep neural network for predicting
social influencers. Bi et al. [23] introduce a model to incorporate the content of tweets and
the followee distribution of microblogs. Similarly, Pal et al. [142] proposed a probabilistic
clustering method to produce a ranked list of influencers using node degree, information
diffusion, and metrics related to tweets’ content.

A less discussed aspect in the machine learning approach is training example creation, which
is generally performed by experts through manual screening. The process involves careful
examination of content quality, feed consistency, and estimation of the rate of high-quality
interactions with the audience. Such a process does not scale for a large number of influencers.
Unlike existing methods, our proposed framework only requires a small number of expert
labels and shifts the burden of label creation to online workers through crowdsourcing, which
is fast, scalable, and cost-effective.

3.3 Problem Formulation

In this section, we first introduce the notations used in the chapter and then formally define
our problem.

Notations.

We use boldface lowercase letters to denote vectors and boldface uppercase letters to denote
matrices. For an arbitrary matrix M, we use Mi , j to denote the entry at the i -th row and j -th
column. We use capital letters (e.g., P ) in calligraphic math font to denote sets. We use x / y
to denote that the two variables x and y are proportionally related, i.e., x = k y , where k is a
constant.

Table 3.1 summarizes the notations used throughout this chapter. We denote the set of unique
candidate social influencers named by the crowd workers as I and the set of workers as J .
We use Ai , j = 1 to denote that the candidate influencer i is an answer provided by worker j ,
and Ai , j = 0 otherwise. Due to the fact that an individual worker can only provide a limited
number of candidate influencers, Ai , j is a sparse matrix where only a small proportion of the
entries are non-zero. For each candidate influencer i 2 I , we collect her social features as
described in detail in Section 3.5.1, and denote the resulting feature vector by xi . The subset of
I , denoted as IL ΩI , represents candidate influencers who are associated with expert labels
yi (for i 2 IL ). Note that we only have a relatively small number of candidate influencers
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Table 3.1: Notations.

Notation Description
I Set of candidate social influencers
IL Set of labeled candidate social influencers
Ij Set of candidate influencers relevant to a worker j
J Set of workers
Ji Set of workers relevant to a candidate influencer i
WI Set of parameters for the answer quality model
A Worker-answer matrix
xi Social feature vector of a candidate influencer
zi Influencer quality distribution
r j Worker reliability distribution
µi Parameter of the influencer quality distribution
A,B Parameters of the prior distribution of worker reliability
Æ,Ø Variational parameters of the worker reliability distribution

with expert labels, namely, |IL |ø |I | and that we aim at estimating the true labels of the
candidate influencers who are in I \IL .

Problem Definition.

Let I be a set of candidate social influencers and IL be the subset labeled by experts. Let
also J be the set of workers who collectively nominated I , where each candidate influencer
can be named by a different number of workers. We aim at inferring the true labels zi 2 {0,1}
for all candidate influencers in I \IL .

Note that in an open-ended answers aggregation setting, we do not control the number of
answers provided by each worker [146]. Hence, the number of workers relevant to differ-
ent candidate influencer can vary from one to many, rendering the aggregation task highly
challenging. This comes in contrast to the conventional crowdsourcing setting, where the
number of workers is usually fixed for every data instance (e.g., five workers per instance),
which simplifies answers aggregation that relies on worker disagreement.

3.4 The OpenCrowd Framework

OpenCrowd is a unified Bayesian framework that incorporates both supervised learning and
crowdsourcing for identifying true social influencers via open-ended answers aggregation.
In this section, we first describe the model and then present our variational inference algo-
rithm for learning OpenCrowd parameters. Next, we present an extension of OpenCrowd for
multiclass classification.
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3.4.1 OpenCrowd as a Generative Model

We represent the generative process of answers as conditioned on both the true labels of the
answers and the reliability of the workers. We model the true label of a candidate influencer
zi 2 {0,1} with a Bernoulli distribution:

zi ª Ber (µi ),µi =æ( f WI (xi )), (3.1)

where µi is the parameter of the distribution predicted by the social features of the candidate
influencer through a feature-based answer quality model, denoted by f (·); WI is the set of the
model parameters; æ(·) is a sigmoid function. We denote f (·) as a generic function that can
be instantiated with any supervised learning model, be it a linear model or a neural network.
Note that WI is shared across all candidate influencers [69], which allows us to exploit the
similarity among candidate influencers.

We represent worker reliability as r j 2 [0,1] ( j 2J ) where r j = 1 indicates that the worker is
fully reliable and r j = 0 otherwise. In practice, we would like to have a measure of confidence
in estimating the reliability of the workers providing different numbers of answers: we should
be more confident in estimating the reliability of workers who provide 50 answers than those
who provide 5 answers only. To quantify the confidence in our inference, we adopt a Bayesian
treatment of r j by introducing a prior, thus modeling r j as a latent variable. Given that r j is a
continuous variable in [0,1], we choose a Beta distribution to model its prior:

r j ª Bet a(A,B), (3.2)

where A and B are the parameters of the distribution. The incorporation of confidence makes
our framework more robust to overfitting, as we show later in Section 3.5.2.

We now define the likelihood of a worker j naming a candidate influencer i as the probability
conditioned on the worker’s reliability r j and the true label of the candidate zi :

p(Ai , j |zi ,r j ) = r
1[zi=Ai , j ]

j (1° r j )1[zi 6=Ai , j ], (3.3)

where 1[·] is an indicator function returning 1 if the statement is True and 0 otherwise. Note
that Eq. (3.3) considers a worker to be reliable if she does not name a candidate influencer who
is indeed not a real influencer. It is, however, likely that a worker does not name a candidate
influencer i simply because she did not think of i . That means that we can only partly treat
the non-named candidate influencers as those the worker considers as non-influencers. It is,
therefore, necessary to introduce negative sampling into the inference algorithm.

Negative Sampling.

Negative sampling consists in taking a random sample of candidate influencers not nominated
by a worker as her answers of non-influencers. Such negative samples are useful to improve
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Figure 3.2: Graphical representation of OpenCrowd. Double (greyed) circles represent ob-
served variables, while single circles represent latent variables. Squares represent model
parameters. Edges represent conditional relationships in answer generation.

worker reliability inference, as we show in our experiment in Section 3.5.5. For each worker,
we consider the candidate influencers named by her and the negatively sampled ones as
the candidate influencers relevant to her. Similarly, to estimate the quality of a candidate
influencer, we consider not only those workers who have nominated the influencer but also
those whose negatively sampled answers contain such an influencer.

The overall OpenCrowd framework is depicted in Figure 3.2. Model learning constitutes of
parameter learning for WI and posterior inference for the latent variables zi and r j .

3.4.2 Variational Inference for OpenCrowd

Learning the parameters of OpenCrowd resorts to maximizing the following likelihood func-
tion:

p(A) =
Z

p(A,z,r|xi ;WI )dz,r. (3.4)

where z and r are the latent true labels for all candidate influencers and the reliability of all
workers, respectively.

Eq. (3.4) consists of an integral with two latent variables, rendering it computationally unfeasi-
ble to optimize [195]. Instead, we consider the log of our likelihood function, i.e.,

log p(A) =
Z

q(z,r) log(
p(A,z,r|xi ;WI )

q(z,r)
)dz,r

| {z }
L (WI ,q)

+
Z

q(z,r) log(
q(z,r)

p(z,r|A,xi ;WI )
)dz,r

| {z }
K L(q||pWI )

(3.5)

where q(z,r) is any probability density function and K L(·) is the KL divergence between two
distributions. By doing so, the two parts of the objective function can then be optimized
iteratively with a variational expectation-maximization method [195]. Specifically, we iterate
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between two steps: 1) the E-step where we approximate the distribution of latent variables
p(z,r|A,xi ;WI ) with the variational distribution q(z,r), by minimizing the KL-divergence and
2) the M-step where we maximize the first term L (WI , q) of Eq. (3.5) given the newly inferred
latent variables.

E-step.

We use the mean-field variational inference approach [26] by assuming that q(z,r) factorizes
over the latent variables:

q(z,r) =
Y

i
q(zi )

Y

j
q(r j ). (3.6)

We further assume the following forms for the factor functions:

q(zi ) = Ber (µi ), q(r j ) = Bet a(Æ j ,Ø j ). (3.7)

where µi , Æ j and Ø j are variational parameters used to perform optimization to minimize the
KL-divergence. The latter can then be minimized using coordinate ascent where we update
one factor while keeping all others fixed and then iterate until convergence.

In the following, we derive the update rules for the variational distributions q(zi ) and q(r j ).
We start by deriving the update rule for q(zi ). Let p(zi |xi ;WI ) be the variational distribution
of zi from the last iteration. The KL-divergence in Eq. (3.5) can be easily simplified [26], by
keeping only the terms that depend on zi , to the following:

q(zi ) / p(zi |xi ;WI )
Y

j2Ji

exp{gq(r j )(p(Ai , j |zi ,r j ))}. (3.8)

where Ji is the set of workers relevant to a candidate influencer i and gx (·) is the expectation
term Ex [log(·)] with x being a variational distribution. Based on this equation, we show in the
next lemma how to efficiently update q(zi ) using the feature-based answer quality model and
the worker reliability parameters from the previous iteration.

Lemma 1 (Incremental Answer Quality). The true label distribution q(zi ) of a candidate
influencer i can be incrementally updated from the output of the answer quality model µi and
the worker’s reliability parameters Æ j and Ø j ( j 2Ji ) in the previous iteration:

q(zi = 1) /
(
µi

Q
j2Ji

exp{™(Ø j )°™(Æ j +Ø j )}, if Ai , j = 0,
µi

Q
j2Ji

exp{™(Æ j )°™(Æ j +Ø j )}, if Ai , j = 1.
(3.9)

where ™(·) is the Digamma function. If q(zi = 0) then µi is replaced with (1°µi ) and, ™(Ø j )
and™(Æ j ) are swapped.

Proof. We show the proof only for zi = 1 since the proof for zi = 0 follows similarly. Using
Eq. (3.1), we have:

p(zi = 1|xi ;WI ) = µi . (3.10)
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We substitute the probabilities p(zi |xi ;WI ) and p(Ai , j |zi ,r j ) in Eq. (3.8) by their respective
definitions in Eq. (3.10) and Eq. (3.3) and get:

q(zi = 1) /
(
µi

Q
j2Ji

exp{gq(r j )(1° r j )}, if Ai , j = 0,
µi

Q
j2Ji

exp{gq(r j )(r j )}, if Ai , j = 1.
(3.11)

By computing the geometric mean of the beta distribution [121], we can evaluate the expecta-
tions gx (.) as follows:

gq(r j )(1° r j ) =™(Ø j )°™(Æ j +Ø j ),

gq(r j )(r j ) =™(Æ j )°™(Æ j +Ø j ). (3.12)

Putting (3.12) into (3.11), the update equation can be simplified as:

q(zi = 1) /
(
µi

Q
j2Ji

exp{™(Ø j )°™(Æ j +Ø j )}, if Ai , j = 0,
µi

Q
j2Ji

exp{™(Æ j )°™(Æ j +Ø j )}, if Ai , j = 1.
(3.13)

which concludes the proof.

Next, we show how to efficiently update the variational distribution q(r j ). Let p(r j ) be the
variational distribution of r j from the last iteration, µ0 be the true label distribution from
the current iteration and Ij be the set of all candidate influencers relevant to a worker. The
KL-divergence in Eq. (3.5) can be simplified, similarly to Eq. (3.8), by keeping only the terms
that depend on r j to get:

q(r j ) / p(r j )
Y

i2Ij

exp{gµ0(p(Ai , j |zi ,r j ))}. (3.14)

The following lemma shows how to solve Eq. (3.14) using an incremental updating rule.

Lemma 2 (Incremental Worker Reliability). The reliability distribution q(r j ) of worker j can
be incrementally updated using the reliability parameters Æ j and Ø j from the last iteration and
the true label distribution from the current iteration, denoted as µ0:

q(r j ) /
(

Bet a(Æ j +
P

i2Ij
µ0,Ø j +

P
i2Ij

(1°µ0)), if Ai , j = 1,

Bet a(Æ j +
P

i2Ij
(1°µ0),Ø j +

P
i2Ij

µ0), if Ai , j = 0.
(3.15)

Proof. We replace the probablity p(r j ) in Eq. (3.14) by the Beta distribution with parameters
Æ j and Ø j from the previous iteration:

q(r j ) / Bet a(Æ j ,Ø j )
Y

i2Ij

exp{gµ0(p(Ai , j |zi ,r j ))}. (3.16)

The expectation term in Eq. (3.16) can be evaluated as follows:
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exp{gµ0(p(Ai , j |zi ,r j ))} =
(

r µ
0

j (1° r j )(1°µ0), if Ai , j = 1,

r (1°µ0)
j (1° r j )µ

0
, if Ai , j = 0.

(3.17)

In the case when Ai , j = 1, we use the expressions from Eq. (3.17) to replace the second term in
Eq. (3.16) as follows:

q(r j ) / Bet a(Æ j ,Ø j )
Y

i2Ij

r µ
0

j (1° r j )(1°µ0). (3.18)

The probability density function of r j ’s distribution is given by:

Bet a(Æ j ,Ø j ) / r
(Æ j°1)
j (1° r j )(Ø j°1). (3.19)

Putting (3.19) into (3.18), we get:

q(r j ) / r
(Æ j°1)
j (1° r j )(Ø j°1) Y

i2Ij

r µ
0

j (1° r j )(1°µ0)

/
Y

i2Ij

r
(Æ j°1)
j (1° r j )(Ø j°1)r µ

0

j (1° r j )(1°µ0)

/
Y

i2Ij

r
(Æ j+µ0°1)
j (1° r j )(Ø j°1+(1°µ0)) (3.20)

/ r
(Æ j+

P
i2Ij

µ0°1)

j (1° r j )(Ø j+
P

i2Ij
(1°µ0)°1).

Thus, if Ai , j = 1 we have:

q(r j ) / Bet a(Æ j +
X

i2Ij

µ0,Ø j +
X

i2Ij

(1°µ0)). (3.21)

Following the same steps, we similarly obtain the expression of q(r j ) in case Ai , j = 0:

q(r j ) / Bet a(Æ j +
X

i2Ij

(1°µ0),Ø j +
X

i2Ij

µ0). (3.22)
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Algorithm 1: Coordinate Ascent Variational Inference
Input :A,xi (8i 2I ), yi (8i 2IL )
Output :Variational distributions: q(zi ) and q(r j )
Initialize :Variational parameters: µi , Æ j = A, Ø j = B ; parameter of the influencer

predictor ( f ): WI

1 while Eq. (3.5) has not converged do
2 E-step:
3 for i 2I do
4 update q(zi ) using Lemma 1;

5 for j 2J do
6 update q(r j ) using Lemma 2;

7 M-step:
8 for i 2I do
9 Update WI via standard gradient descent;

M-step.

Given the true labels of candidate influencers and the worker reliability inferred by the E-step,
the M-step maximizes the first term of Eq. (3.5) to learn the parameters Æ j and Ø j :

L (WI , q) =
Z

q(zi ,r j ) log p(Ai , j , zi ,r j |xi ;WI )d zi ,r j + const .

=
X
zi

Z
q(zi ,r j ) log[p(Ai , j |zi ,r j )p(zi |xi ;WI )]dr j + const .

=
X
zi

Z
q(zi ,r j ) log p(Ai , j |zi ,r j )dr j

| {z }
M1

+
X
zi

q(zi ) log p(zi |xi ;WI )

| {z }
M2

+const . (3.23)

where const . = Eq(zi ,r j )log ( 1
q(zi ,r j ) ) is a constant. Only the second part of L (WI , q), i.e., M2,

depends on the model’s parameters. M2 is exactly the inverse of the cross-entropy between
q(zi ) and p(zi |xi ;WI ), which is widely used as the loss function for many classifiers. M2 can,
therefore, be optimized using standard methods [136] (e.g., back-propagation in the case of a
neural network).

3.4.3 Algorithm

The overall optimization algorithm is given in Algorithm 1. It iterates over the E-step (rows
2-5) and the M-step (rows 6-7) until our objective function converges. In rows 2-3, we iterate
through all candidate influencers where for each candidate influencer i , we update q(zi ) using
Lemma 1. Similarly in rows 4-5, we iterate through all workers where for each worker j we
update q(r j ) using Lemma 2. In rows 6-7, WI can be incrementally updated starting from the
values in the previous iteration. The convergence is reached when answer quality q(zi ) is
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no longer modified by worker reliability in the previous iteration (Eq. (3.8)) and it no longer
updates the parameters of the answer quality model (Eq. (3.23)).

The iterations through the relevant workers for each candidate influencer (rows 2-3) require a
time complexity of O(|A|), where |A| denotes the number of non-zero entries of A. Similarly,
the time complexity for row 4-5 is O(|A|). The overall complexity of the algorithm is, therefore,
O(#i ter £ |A| +TW), where #i ter is the number of iterations in the variational inference
algorithm and TW represents the complexity of learning WI in a supervised learning setting.

3.4.4 Multiclass OpenCrowd

We extend our framework to perform multiclass classification of open-ended answers where
we apply a one-vs-rest strategy. We proceed by using a classifier per class such that for each
data instance, we have one class as positive and remaining classes as negative. We maintain
the same algorithmic procedure where we iterate between an E step and an M step. For the E
step, we modify the formulas in Lemmas 1 and 2 to consider the multiclass case. While for
the M step, we reuse the reasoning in Section 3.4.2 to update the parameters of a multiclass
classifier. In the following, we describe the alteration of the E step for multiclass classification.

We propose to update Lemma 1 such that we maintain the incremental relation between of
the true label distribution q(zi ) and the worker’s reliability parameters as follows:

q(zi = c) /
(

✓i ,c
Q

j2Ji
exp{™(Ø j )°™(Æ j +Ø j )}, if Ai , j 6= c.

✓i ,c
Q

j2Ji
exp{™(Æ j )°™(Æ j +Ø j )}, if Ai , j = c

(3.24)

where µi ,c is the predicted class through the feature-based answer quality model and C is the
set of classes. We use the conditions Ai , j = c to update the class probability c when a worker j
selects it as the class for an influencer i .

Similarly, we modify Lemma 2 and propose to incrementally update the worker’s reliability
using the reliability parameters Æ j and Ø j from the last iteration and the predicted answer
quality from the current iteration, denoted as ✓0:

q(r j ) /
(

Bet a(Æ j +
P

i2Ij
✓0

i ,Ai , j
,Ø j +

P
i2Ij

(1°✓0
i ,Ai , j

)), if Ai , j 2C ,

Bet a(Æ j +
P

i2Ij
u,Ø j +

P
i2Ij

(1°u)), if Ai , j = 0
(3.25)

Note that in this case ✓0
i is a vector containing the class probabilities obtained in the previous

step through Eq. (3.24). The condition Ai , j 2C means that the worker named influencer i and
selected its corresponding class, while the condition Ai , j = 0 means that the worker did not
name influencer i . For the latter case, we use a parameter u 2 [0,1] that we set empirically.

The overall OpenCrowd for multiclass classification algorithm is presented in Algorithm 2.
It iterates over the E-step (rows 2-5) and M-step (rows 6-7) until the evidence lower bound
(ELBO) [26] converges.
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Algorithm 2: OpenCrowd for Multiclass Classification
Input :A,C ,xi (8i 2I ), yi (8i 2IL )
Output :Variational distributions: q(zi ) and q(r j )
Initialize :Variational parameters: µi , Æ j = A, Ø j = B ; parameter of the influencer

predictor ( f ): u, WI

1 while the ELBO has not converged do
2 for i 2I do
3 update q(zi ) using Equation (3.24);

4 for j 2J do
5 update q(r j ) using Equation (3.25);

6 for i 2I do
7 Update WI via standard gradient descent;

3.5 Experiments and Results

This section presents experimental results evaluating the performance of OpenCrowd2 on
two different domains, by comparing it against state-of-the-art Boolean and feature-based
aggregation methods. In addition, we investigate the properties of our approach such as the
impact of negative sampling on the performance. We start by introducing our experimental
setup below before presenting the results of our experiments.

3.5.1 Experimental Setup

Crowdsourcing Task.

We consider the problem of finding social influencers in two domains: fashion and information
technology. For both domains, we published question-answering tasks on Figure Eight3,
asking workers to name social influencers they know. To set the context and promote workers
to reflect on their experience, we asked workers to assess their domain-specific knowledge
(five-point scale), estimate how often do they read social media posts from influencers (never,
rarely, sometimes, always), and describe how they got to know the influencers. Workers name
candidate influencers by providing their Twitter usernames, from which we retrieve social
features (see “Social Feature Extraction”).4 The task took 2 minutes to complete on average.
Workers who completed the task received a reward of 30 cents (USD), with an additional
bonus: they were paid 10 additional cents (and up to 50 cents) for every social influencer they
provided after naming 3 influencers.

2The implementation is available here: https://github.com/eXascaleInfolab/OpenCrowd.
3https://www.figure-eight.com
4Twitter usernames are first verified automatically through Twitter API.
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Datasets.

We collected two datasets of candidate influencers in two domains: Fashion and Infotech.
The size of the collected datasets are comparable to typical datasets for Boolean answer
aggregation [175]. Key statistics of these datasets are reported in Table 3.2. For evaluating
the multiclass version of OpenCrowd, we additionally ask workers to classify 497 Fashion
candidate influencers to one of the three categories emerging influencer (0), established
influencer (1) and other (2). Our manual analysis (see “Expert Assessment”) revealed that
30.64% and 43.39% of the crowd answers designate true influencers for Fashion and InfoTech,
respectively. The relatively large number of crowd answers collected in a short period of
time (<10 hours for both Fashion and InfoTech) confirms our assumption that crowdsourced
open-ended question-answering can drastically speed up the data collection for finding social
influencers. Moreover, the high sparsity of the answer matrices (Table 3.2) and the fact that
the majority of the answers are incorrect substantiates the necessity of open-ended answers
aggregation that takes into account the workers’ reliability.

Expert Assessment.

We conducted a series of interviews with experts from three leading companies 5 that connect
brands to social influencers. We distilled four main characteristics of influencer assessments:
authenticity, dedication, branding, and communication. Following their guidelines and
examples, three of the authors randomly selected 40% of the candidate influencers and
labeled them by manually examining their profile and content on Twitter. In more detail, a
candidate was considered as a real influencer whenever she: 1) tweets about a specific topic;
2) posts new content regularly; 3) keeps a consistent and unique style in her posts; and 4)
communicates with her followers through comments (mostly for micro-influencers). The
authors reached an initial agreement of over 80%. In case of disagreement, they discussed it
until reaching a decision.

Social Feature Extraction.

The features used in our framework are extracted from the Twitter account of the named
candidate influencers. These features include metadata features such as the number of
followers, number of followees and number of tweets, and semantic features such as the
topics of a candidate influencer’s tweets. In order to extract the topics from the tweets, we first
represent all tweets as a bag of words. Then, we apply a grid search in {5, 10, 20, 50, 100} to set
a threshold on the word’s frequency. For our experiments, we keep only the words that appear
more than 20 times. We finally compute the TF-IDF scores of the constructed bag of words
and use the scores together with the other features to train our answer quality model.

5Collabary (collabary.com), Influencer Check (influencer-check.ch), and Reachbird (reachbird.io)
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Table 3.2: Description of the datasets.

Dataset #Cand. Infl. #Workers #Answers Sparsity

Fashion 890 250 1416 99.36%
InfoTech 1057 200 1643 99.22%

Table 3.3: Performance (accuracy and AUC) comparison of aggregation techniques on two
datasets with supervision degree s_deg from 50% to 90%. The best performance is highlighted
in bold; the second best performance is marked by ‘*’ for accuracy and by ‘+’ for AUC.

Method Metric
Fashion InfoTech

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

DS
Accuracy 0.689 0.716* 0.703 0.688 0.711 0.662 0.660 0.626 0.641 0.536
AUC 0.191 0.169 0.242+ 0.244 0.263 0.174 0.203+ 0.222+ 0.255 0.272

GLAD
Accuracy 0.697 0.716* 0.724 0.700 0.688 0.669* 0.667 0.637 0.672 0.595
AUC 0.183 0.189 0.229 0.224 0.263 0.150 0.186 0.138 0.219 0.307+

ZenCrowd
Accuracy 0.701 0.686 0.733* 0.702* 0.688 0.651 0.674* 0.664* 0.683* 0.627
AUC 0.157 0.175 0.203 0.239 0.287+ 0.146 0.198 0.212 0.246 0.234

LFC
Accuracy 0.721 0.694 0.718 0.691 0.755* 0.653 0.627 0.643 0.616 0.636*
AUC 0.203+ 0.203+ 0.225 0.264+ 0.277 0.189+ 0.192 0.215 0.276+ 0.307+

OpenCrowd
Accuracy 0.708* 0.740 0.751 0.769 0.889 0.734 0.782 0.790 0.797 0.804
AUC 0.304 0.350 0.350 0.452 0.495 0.270 0.279 0.353 0.326 0.339

Comparison Methods.

Due to the lack of existing open-ended answers aggregation methods (cf. Section 3.2), we first
compare against the following state-of-the-art closed-pool (Boolean) aggregation methods: 1)
ZenCrowd [50], an expectation-maximization (EM) method that estimates worker reliability as
a model parameter; 2) Dawid-Skene (DS) [49], an EM method that learns worker reliability as a
confusion matrix; 3) GLAD [214], an EM method that simultaneously learns worker reliability
and task difficulty; and 4) LFC [158], an EM method that incorporates priors in modeling
worker reliability. Then, we compare against existing techniques that take into account
task’s features for answer aggregation: 1) LFC_SoT [190], a statistical model that estimates
both worker reliability and task clarity by clustering workers into groups; 2) CUBAM [212],
a Bayesian probabilistic model that learns worker reliability and task domains as a feature
vector from the worker-answer matrix; and 3) iCrowd [59], a crowdsourcing framework that
considers the topical similarity of tasks based on their textual description for worker reliability
inference. For the evaluation of multiclass OpenCrowd, we compare with 4) FaitCrowd [120],
an unsupervised method that captures the topics of tasks based on their textual description
and models topic-specific worker qualities; and 5) a variation of BCCWords [179], which
models worker reliability in the form of confusion matrices. The original version of BCCWords
can only consume textual features, we adapt it such that it can process any type of features.

We compare all the EM-based methods in a semi-supervised setting by fixing the known labels
in the EM algorithm [175] (See [185, 206] for the case of semi-supervised DS). Then, in order to
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apply these methods to our problem, we use negative sampling to simulate a worker’s answers
of non-influencers by sampling the candidate influencers she does not name. We empirically
determine the optimal sampling rates for each comparison method. Furthermore, for the
techniques that model a task based on its textual description, we use the textual social features
as input to model a candidate influencer.

To further investigate the benefits of taking into account the worker-answer matrix, we com-
pare OpenCrowd against some feature-based methods: logistic regression (LR) and a multi-
layer perceptron (MLP). We define two variants of our framework: 1) OpenCrowd-EM: Open-
Crowd that aggregates workers’ answers but models worker reliability as a fixed parameter;
and 2) OpenCrowd, our framework that models worker reliability as a latent variable.

Parameter Settings.

The parameters of our framework and those for model training are empirically set. We search
for the best model architecture for MLP, and the predictor f in OpenCrowd-EM and Open-
Crowd, with 0, 1, and 2 hidden layers, and apply a grid search in {64, 128, 256, 512, 1024} for the
dimension of the hidden layers. In model training, we select learning rates from {0.0001, 0.001,
0.01, 0.1, 1} for the learning of WI in all variants of our framework, as well as for the learning of
r j in OpenCrowd-EM. To investigate the impact of negative sampling, we experiment with
sampling rates (s_r ate) in {0, 0.1, 1, 10, 100} where s_r ate = 10 indicates for example that
for each worker, the negative samples are ten times the size of the candidate influencers
named (i.e., deemed as positive) by each worker. For OpenCrowd, we set the priors A and B by
sampling from a uniform distribution ª [0,10] and update them in the E-step according to
Lemma 2.

Evaluation Protocols.

We split the labeled subset of candidate influencers into training, validation, and test sets.
OpenCrowd is trained on the answers in the training set, tuned on the validation set and
evaluated on the test set. To investigate the impact of the degree of supervision (s_deg ) on
OpenCrowd performance, we split the labeled subset by s_deg 2 {50%,60%,70%,80%,90%},
where s_deg = 60% means that 60% of the labeled subset is used for training, and the rest
for validation and test with equal split. We use accuracy and area under the precision-recall
curve (AUC) to measure the performance. Higher values of accuracy and AUC indicate better
performance. Note that given the imbalanced classes in our datasets, accuracy is dominated
by the results on the non-influencers; similarly, the metric area under the ROC curve would
also be biased to the non-influencers. In contrast, the AUC we use – area under the precision-
recall curve – is more indicative of the performance in our context, as we are more interested
in detecting real influencers from the workers’ answers [28].
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3.5.2 Comparison to Boolean Aggregation

Table 3.3 summarizes the performance of boolean answers aggregation methods on our two
datasets with different supervision degrees. We make several observations.

First, we observe that ZenCrowd outperforms DS and GLAD in terms of accuracy and has a
comparable performance in terms of AUC. Recall that ZenCrowd is less expressive compared
to DS and GLAD, as it only models worker reliability as a parameter. In comparison, DS models
worker reliability as a confusion matrix, and GLAD further models the task difficulty (in our
context the ambiguity of a candidate influencer being the true influencer). The comparison
result indicates that in our context, more expressive models do not necessarily lead to higher
performance. This is likely due to the high sparsity of the worker-answer matrices that can
easily lead to overfitting. Second, we observe that methods that model worker reliability
as a latent variable with a prior distribution, namely LFC and our framework OpenCrowd,
outperform the other methods. Such a result confirms the necessity of modeling worker
reliability as a latent variable, as it helps to account for the confidence in estimating model
parameters. This is particularly important to improve model robustness for sparse datasets
similar to our case. We provide more results about this point in Section 3.5.5.

Most importantly, OpenCrowd achieves the best performance among all answers aggregation
methods under comparison: it improves the state of the art by 6.94% accuracy and 62.06%
AUC on Fashion, and by 17.56% accuracy and 33.54% AUC on InfoTech. This significant
improvement clearly demonstrates the effectiveness of our framework in open-ended answers
aggregation.

Impact of Supervision Degree.

The supervision degree s_deg controls the number of observed labels in model training. We
observe that the performance of our framework increases along with the increase of s_deg , as
measured by both accuracy and AUC. This is natural as using more labeled data provides more
information in discriminating influencers from non influencers. Such a pattern, however, is
not observed for the other methods that we compare to. This is likely due to the fact that the
other methods do not take advantage of the social features, which are useful as they serve as a
means to propagate the labels to non-labeled candidate influencers. These results show that
OpenCrowd is better at utilizing existing labels for answers aggregation.

Robustness.

The learning of OpenCrowd involves two types of random processes, i.e., the random initial-
ization of the parameters (e.g., WI ) and negative sampling. To investigate their impacts on
OpenCrowd performance, we measure the standard deviation of OpenCrowd performance
over 10 runs as depicted in Figure 3.3. Results show that the standard deviation in terms of
accuracy is 0.017 and 0.018 on Fashion and InfoTech, respectively; and in terms of AUC, the
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Figure 3.3: Performance of OpenCrowd across 10 runs.

Table 3.4: Performance (accuracy and AUC) comparison of feature based aggregation tech-
niques on the two datasets.

Dataset Method Acuracy AUC

Fashion

CUBAM 0.718 0.290
iCrowd 0.712 0.301+
LFC_SoT 0.724* 0.253
OpenCrowd 0.751 0.350

InfoTech

CUBAM 0.661 0.326
iCrowd 0.630 0.372+
LFC_SoT 0.698* 0.252
OpenCrowd 0.790 0.397

standard deviation is 0.023 and 0.028 on Fashion and InfoTech, respectively. The standard
deviations are small compared to the absolute accuracy and AUC. Such a result is consistent
across different supervision degrees. These results signify the robustness of OpenCrowd across
different runs.

3.5.3 Comparison to Feature-Based Aggregation

We now compare the performance of our method against feature-based aggregation tech-
niques. Table 3.4 shows the results of our comparison against these methods in terms of
accuracy and AUC on both the Fashion and InfoTech datasets (with a supervision degree of
60%). From these results, we make the following observations.

Among the baselines, LFC_SoT achieves the best accuracy yet the lowest AUC. In fact, LFC_SoT
cannot handle the case where some workers do not give an answer to some tasks and hence
cannot properly support negative sampling. Since the worker-answer matrix is very sparse in
our setting, LFC_SoT labels most candidate influencers as negative (more than 75%). Therefore,
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LFC_SoT infers most true influencers to be non influencers and hence the results. In contrast,
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Figure 3.4: Comparison between feature-based methods and OpenCrowd variants measured
by (a) Accuracy and (b) AUC.

iCrowd achieves better performance in terms of AUC than CUBAM and LFC_SoT. Recall that
iCrowd takes into account the social features of candidate influencers and combines them
with worker reliability to infer the truth. In comparison, CUBAM models the task difficulty as
a vector but relies solely on the worker-answer matrix. This result confirms the necessity of
taking into account the social features to identify real influencers in the set of candidates.

Overall, OpenCrowd achieves the best performance among all feature-based aggregation
methods: it outperforms the second best method by 3.7% accuracy and 16.27% AUC on
Fashion and by 13.18% accuracy and 6.7% AUC on InfoTech (on average: 8.44% accuracy and
11.5% AUC). Unlike the baseline methods that do not use social features (e.g., CUBAM) or rely
only on textual features (e.g., iCrowd), OpenCrowd is able to leverage any type of social features,
including non-textual ones. More importantly, unlike the unsupervised topic modeling used
by iCrowd, the supervised answer quality model in OpenCrowd learns from the labeled data
the "weights" of social features, thereby making it better at influencer identification.
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Figure 3.5: Performance of categorical aggregation methods with varying supervision rates.

3.5.4 Evaluation of Multiclass Classification OpenCrowd

We evaluate the multiclass version of OpenCrowd described in Section 3.4.4 with categorical
and feature-based methods on the Fashion influencer dataset.

Our comparison with categorical methods is shown in Figure 3.5. We compare Multi. Open-
Crowd with the Boolean methods described in Section 3.5.1, except for ZenCrowd [50] as it can
not be applied for multiclass classification tasks. In our experiment, we vary the supervision
degree between 30% and 80% and measure the performance in accuracy and AUC. First, we
observe that increasing the supervision degree improves the performance of LFC in terms of
accuracy but does not significantly impact its performance in terms of AUC. Similarly, D&S
and GLAD do not improve when increasing the supervision degree. This result is consistent
with our comparison with Boolean methods in the binary setting in Section 3.5.2, where we
found that they do not benefit from the social features and thus can not benefit from the
increase of the labeled candidate influencers. Second, our feature-based method (Multiclass
OpenCrowd) generally outperforms baseline methods in accuracy and AUC. Overall, it im-
proves the second best method (LFC) by 20% accuracy and 30% AUC. Finally, we observe that
our method improves with increasing the supervision degree as it leverages the labeled data
to better discriminate between workers’ answers.

Figure 3.6 shows the comparison between Multi. OpenCrowd and feature-based methods.
Similarly to our comparison with categorical methods, we vary the supervision degree between
30% and 80% and measure the performance in accuracy and AUC. First, we observe that
FaitCrowd performs poorly compared to the baseline methods. Recall that FaitCrowd is an
unsupervised approach and does not benefit from the labels to learn the weight of answers’
features. The improvement we observe for FaitCrowd when increasing the supervision rate is
simply due to the smaller size of the testing set. Second, we observe that the performance of
supervised methods (BCCWords MLP, MLP, and LR) increases when increasing the supervision
rate. This result is expected as they can better discriminate classes when more labeled data
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Figure 3.6: Performance of feature-based aggregation methods with varying supervision rates.

becomes available. Finally, we observe that BCCWords MLP outperforms FaitCrowd, MLP, and
LR in accuracy and AUC, demonstrating the importance of incorporating workers’ answers in
their learning.

Most importantly, we observe that Multi. OpenCrowd overall achieves the best performance
and outperforms the second best method (BCCWords MLP) on average on all supervision
rates by 1.55% accuracy and 2.18% AUC. The main difference between Multi. OpenCrowd and
BCCWords MLP is a worker’s model where the latter uses a confusion matrix while we use a
single parameter. This improvement is likely due to the sparsity of our worker-answer matrix,
which can easily lead to over-fitting for more expressive models.

3.5.5 Properties of OpenCrowd

The comparison between OpenCrowd variants against feature-based methods (see “Com-
parison Methods”) is shown in Figures 3.4(a,b). OpenCrowd-EM outperforms both LR and
MLP by 18.25% and 5.82% accuracy and by 13.69% and 18.05% AUC, respectively. These
results show the importance of considering worker reliability in aggregating workers’ answers.
Among the two variants, OpenCrowd outperforms OpenCrowd-EM by 7.37% accuracy and
31.62% AUC. This result indicates that modeling the worker reliability as a latent variable with
a prior distribution not only makes the model more robust, but also improves the aggregation
performance.

Impacts of Sampling Rate.

The sampling rate s_r ate controls the size of randomly sampled candidate influencers in
estimating the workers’ reliability. The results are shown in Figure 3.7. We observe that, as the
sampling rate increases from 0 to 100, the performance first increases then decreases. Such a
result is consistent on both datasets, measured by both accuracy and AUC. The optimal per-
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Figure 3.7: Performance of OpenCrowd with varying s_r ate.

formance is reached for s_r ate = 10 for Fashion and s_r ate = 0.1 for InfoTech, indicating that
workers’ evaluation on candidate influencers they do not name is more negative on Fashion.
Overall, the variation of the performance with different s_r ate indicates the importance of
selecting the optimal sampling rate. The similarity in performance variation across the two
datasets again demonstrates the robustness of OpenCrowd.

Interpretation of Learning Results.

Results of OpenCrowd can be explained in terms of the social features of candidate influencers
and of the correlation between worker answers. We show in Figure 3.8 the learning results
of real-world examples for three workers and seven candidate influencers from the InfoTech
dataset. We also show the mean and confidence (differential entropy [128]) of worker reliability
distribution (r j ), the predicted quality (µi ) and the ground-truth labels of candidate influ-
encers. We observe that workers who name real influencers have a high reliability as inferred
by OpenCrowd, and otherwise have a low reliability. For example, the three influencers named
by worker j1, who has the highest reliability, are all real influencers. Among them, candidates
i1 and i2 clearly exhibit influencer characteristics, e.g., they have a large number of followers
and tweets dedicated to InfoTech. These results indicate that our approach is able to correctly
infer the reliability of workers by leveraging the social features of the candidate influencers
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Figure 3.8: Examples of workers and their nominated candidate influencers in the InfoTech
domain. We show for workers the inferred reliability (Rel.) and inference confidence (Conf.),
and for candidate influencers the predicted quality as well as the ground-truth labels. Profile
pictures are from public data sources and are randomly assigned to anonymize user identities.

they named. Thanks to the worker’s reliability, micro-influencers with a smaller number of
followers, such as candidate i3, can also be successfully detected by our approach. We also
observe that worker j3 has the same high reliability as j1, despite the fact that only one of the
candidates (i2) she named exhibits influencer characteristics. This is because OpenCrowd
leverages the correlation between worker answers in reliability inference: i2 is named by
both workers j1 and j3. The difference between the number of answers provided by j1 and
j3 is captured through the confidence measure: i1 has a higher confidence than i3. Most
importantly, we observe that the high reliability inferred for j3 helps to detect an additional
micro-influencer that she named, i.e., i7. These results demonstrate that OpenCrowd can find
micro-influencers through reliable workers, whose reliability can be inferred either through
further named candidate influencers or through similar workers.

3.6 Conclusion

In this chapter, we have presented OpenCrowd, a unified Bayesian framework that seamlessly
incorporates machine learning and crowdsourcing for social influencer identification. Our
framework aggregates open-ended answers while modeling both the quality of the workers’
answers and their reliability. We derived a principled optimization algorithm based on varia-
tional inference with efficient incremental update rules for learning OpenCrowd parameters.
Extensive validation on two real-world datasets shows that OpenCrowd is an effective and ro-
bust framework that substantially outperforms state-of-the-art answers aggregation methods.
Results further show that our framework is particularly useful in finding micro-influencers by
exploiting the social features and the correlation between worker answers.

The crowdsourcing framework used in OpenCrowd can only evaluate open-ended answers on
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a single criterion. Consequently, our method can only be executed on tasks where a single
dimension is assessed. Moreover, workers’ contribution to OpenCrowd consists of providing
open-ended answers but does not interfere with their evaluation. In the next chapter, we will
investigate a technique that will allow human contributors to assess open-ended answers via
peer grading and evaluate them on many dimensions.
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4 Peer Grading the Peer Reviews: A Dual-Role
Approach for Lightening the Scholarly Paper
Review Process
Open-ended answers are omnipresent in almost all domains. In the scientific domain, for
instance, researchers are often solicited to assess each other’s scholarly papers and provide
feedback in a written review. In this context, the scholarly reviews can be considered open-
ended answers as they are provided in a free-text form and answer the question: What are the
paper’s strengths and weaknesses?

Due to the rapid increase of scholarly paper submissions, conferences recruit many reviewers
with different levels of expertise and background to guarantee a minimum number of reviews
per paper. Unfortunately, with such a scale, the submitted reviews often do not meet the
conformity standards of the conferences. Such a situation poses an ever-bigger burden on the
meta-reviewers when trying to reach a final decision.

In this chapter, we propose a human-AI approach that estimates the conformity of reviews
to the conference standards. Specifically, we ask peers to grade each other’s reviews anony-
mously concerning important criteria of review conformity such as sufficient justification and
objectivity. We introduce a Bayesian framework that learns the conformity of reviews from the
peer grading process, historical reviews, and conference decisions while considering grading
reliability. Our approach helps meta-reviewers easily identify reviews that require clarification
and detect submissions requiring discussions while not inducing additional overhead from
reviewers. Through a large-scale crowdsourced study where crowd workers are recruited as
graders, we show that the proposed approach outperforms machine learning or review grades
alone and can be easily integrated into existing peer review systems.

4.1 Introduction

Peer review is the standard process of evaluating the scientific work of researchers submitted
to academic journals or conferences. An essential task in this process comes at the end when
the meta-reviewers have to make a decision as to accept a paper or not. Recently, peer review
has been challenged by the rapid increase of paper submissions. Consider the example of
computer science conferences: The Conference on Neural Information Processing Systems
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(NeurIPS) and the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
received 9467 and 6656 submissions in 2020, respectively; the numbers are five times the
number of submissions they received in 2010.

To guarantee a minimum number of reviews per paper, those conferences recruit a large
number of reviewers of different expertise levels and background. For example, due to the
very high number of submissions, some conferences decided to lift the restriction of having
published papers in former editions of the same venue to be part of the reviewing board [37].
The submitted reviews do not always meet the conformity standards of the conferences such
as the presence of sufficient justification for the claims, the validity of argumentation (e.g., not
self-contradictory), and the objectivity of comments. Such a situation poses an ever-bigger
burden on the meta-reviewers, who not only have to handle more papers and reviews, but
also have to carefully validate the reviews in terms of the conformity to the review standards.
For instance, in the NeurIPS example we cite above, each meta-reviewer had to handle up to
19 submissions with around 76 reviews total.

The load could be reduced if we were able to develop methods to automatically detect low-
conformity reviews. The need has been explicitly discussed recently by program chairs of the
ACM SIGMOD conference [3]: “The chairs discovered low-confidence reviews manually; such
reviews, however, should be flagged automatically to allow for immediate action”, “automated
analysis of the reviews as they come in to spot problematic text ... could dramatically alleviate
the overhead that chairs and meta-reviewers endure while trying to detect the problem cases
manually”. We note that computational methods have provided strong support to streamline
several parts of the peer review process, such as those for paper assignment to reviewers [57,
85, 186, 119, 94], finding expert reviewers [51, 61, 129], and reviewer score calibration [64, 131,
5]; however, relatively little work can be found on developing computational methods for
detecting low-conformity reviews.

Automatic detection of low-conformity reviews is nontrivial for two main reasons. First, the
task is highly complex and requires to assess reviews from a multitude of dimensions [72, 1,
183, 152, 170] including justification, argumentation, objectivity, etc. Assessment on those di-
mensions is cognitively demanding as it requires to comprehend the review text to understand
the various relations among its statements. Second, submission and review information of
most conferences are not openly accessible for privacy and confidentiality concerns. This lack
of training data limits the performance of existing natural language processing techniques.

To tackle these challenges, we advocate a human-AI collaborative approach for the semi-
automatic detection of low-conformity reviews. We involve peer reviewers to grade each other’s
reviews anonymously with respect to important criteria of review conformity. Simultaneously,
a machine learning model joins the assessment for less ambiguous reviews while learning
from new peer grading to make connections between the review features and their conformity
level. The main advantage of involving machine learning is that the model encapsulates and
accumulates human knowledge of review conformity over time: what it learned in the previous
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editions of a conference can be used for a new edition by simply applying the model to new
reviews. Over time, the model improves and the human-AI approach requires less amount
of grading from humans to detect low-conformity reviews. The “peer grading peer reviews”
mechanism does not disrupt current peer review process: reviewers of the same paper are
supposed to read each other’s reviews and make adjustments to their own reviews whenever
necessary. Making such an explicit step by asking them to grade each other’s reviews can
potentially stimulate reviewers to be more engaged and promote the quality of the discussion
thereafter. Our proposed mechanism is, therefore, a lightweight add-on to the current peer
review systems without inducing much extra effort from the reviewers.

At the technical level, we introduce a Bayesian framework that seamlessly integrates machine
learning with peer grading for assessing review conformity while allowing the model to learn
from peer grading. An important consideration of our framework design is that it models the
reliability of the graders, thus taking into account the effect of their various background and
expertise levels. To learn the reliability and the parameters of the machine learning model,
we derive a principled optimization algorithm based on variational inference. In particular,
we derive efficient updating rules that allow both model parameters and grader reliability
to be updated incrementally at each iteration. By doing so, both types of parameters can be
efficiently learned with little extra computational cost compared to the computational cost for
training a machine learning model alone.

To evaluate our proposed approach, we first conduct a small-scale online experiment with
real expert reviewers, where we simulate the real peer review process with peer grading. We
evaluate the effectiveness of peer grading by taking into account the grading as a weight of the
reviewers’ recommendation scores in the aggregation and we show that the aggregated score
is a better approximation of the meta-decisions as compared to existing aggregation methods,
e.g., average or weighted average by self-reported confidence. The number of expert grading is,
however, not sufficient for evaluating proposed Bayesian framework. Inspired by the positive
results of worker performance in judging the relevance of both scientific papers and search
results to specific topics [24, 97], we conduct a larger-scale crowdsourcing study where we
collect worker grading to approximate expert grading. We then use worker grading to evaluate
our framework on the dataset we collected from the ICLR conference over a three-year time
period, which allows us to observe the gradual model improvement over time.

In summary, we make the following key contributions:

• We propose a new dual-role mechanism called “peer grading peer reviews” to lighten
the review process. Our approach can be easily integrated into current scholarly peer
review systems;

• We introduce a Bayesian framework that integrates a machine learning model with peer
grading to collaboratively assess the conformity of scholarly reviews while allowing the
model to improve over time;
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• We conduct a longitudinal evaluation of our framework across multiple years of a
conference, showing that our method substantially improves the state of the art by
10.85% accuracy and that the model improves by 6.67% accuracy over three years.

4.2 Related Work

In this section, we first discuss the state of the art in peer reviewing, then review existing work
methodologically related to our framework in review assessment and peer grading.

4.2.1 Scientific Peer Review

In the following, we discuss two relevant topics: computational support for scientific peer
review and biases in reviews. State-of-the-art tools from artificial intelligence are making in-
roads to automate parts of the peer-review process [153]. A typical example is automatic paper
assignment to appropriate reviewers. The problem has been formulated as an information
retrieval problem [57, 75, 129, 86], where a paper to be assigned is a “query” and each review
is represented as a document (e.g., an expertise statement or publications of the reviewer).
This problem has also been formulated as matching problem, where the goal is to match
a set of papers with reviewers under a given set of constraints, like workload, interest, and
conflicts-of-interest [85, 186, 119, 94, 81]. Another important topic is finding expert reviewers.
The task generally relies on automatic content analysis of textual documents (e.g., academic
publications) and scientometrics (e.g., number of grants and patents), as well as link analy-
sis based on cross-references between documents [51, 61, 129]. Apart from those, work has
also been devoted to developing methods for identifying sentiments in reviews [207] and for
predicting rebuttal results [66]. Recently, a pre-trained language model SciBERT has been
introduced for modeling text in scientific publications [20].

Compared to the large body of work on those problems, relatively little effort can be found
on developing automatic tools for review conformity assessment. Recent discussions have
pointed to problems in low-conformity reviews, where reviewers can exhibit bias or only
support expected, simple results, or ask for unnecessary experiments [3, 21, 153, 4, 58, 19].

Among those problems, biases in reviews is the most extensively studied topic. An important
source of review biases comes from the setup of the review process being single- or double-
blind. Snodgrass [180] reviews over 600 pieces of literature on reviewing, summarizing the
implications of single- and double-blind reviews on fairness, review quality, and efficacy of
blinding. In particular, the author points out the significant amount of evidence showing
review biases in a single-blind setup, favoring high-prestigious institutions and famous authors.
A more recent study by Tomikins et al. [192] through a controlled experiment on the ACM
WSDM conference confirms such a finding. Another important source of bias is varying
standards of reviewers in providing recommendations. A recent analysis by Shah et al. [171]
over the reviews of the Neurips conference finds that the fraction of papers receiving scores
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over a threshold is not aligned with the meaning of the threshold defined by the conference.
For example, nearly 60% of scores were above 3 despite the fact that the reviewers were asked
to give a score of 3+ only if the paper lies in the top 30% submissions. This leads to the
frustration of many authors whose papers get rejected despite receiving good scores.

Compared to those studies on review biases, other aspects of low-conformity reviews are
much less discussed such as the lack of justification for decisions and of arguments. We
show in Section 4.4 through an online survey that the lack of justification for arguments and
decisions is most often due to low-conformity reviews, which increases the complexity of the
meta decisions and, if not handled well, lower the authors’ trust in the venue. We envision
that automatic methods for low-conformity reviews detection can significantly reduce this
issue, similar to what automatic methods for paper-reviewer assignment achieved in the
past decades. Our work makes a first attempt along this direction, providing a first-of-it-
kind human-in-the-loop AI method that leverages both human and machine intelligence in
determining review conformity.

4.2.2 Review Assessment and Peer Grading

In the design of our approach, we draw inspiration from existing methods for review assess-
ment and peer grading, developed in different domains. Methods for review assessment have
been mainly developed for e-commerce and online rating platforms. Olatunji et al. [139]
propose a convolutional neural network with a context-aware encoding mechanism to predict
the product reviews’ helpfulness based on the review text. Zhang et al. [232] study the problem
of predicting the helpfulness of answers to users’ questions on specific product features. Their
model is based on a dual attention mechanism to attend the important aspects in QA pairs and
common opinions reflected in the reviews. These methods rely in their core on pre-trained
language models such as Glove [149] or ALBERT [104]. These language models are trained on
massive and heterogeneous corpora to capture text semantics, which provide useful infor-
mation for review classification. Prediction for scholarly reviews is more challenging than for
other types of reviews due to both the cognitive complexity of the task, the highly specialized
topic, and the lack of available datasets for model training. Unlike those fully automatic
methods, we consider the role of humans (i.e., peers) in our approach as indispensable, as we
show in our experiments.

Methods for peer grading have been mainly developed for (online) education and crowd-
sourcing platforms. In the educational context, Wang et al. [208] study the phenomenon of
students dividing up their time between their own homework and grading others from a game
theory perspective. Crowd workers have been used to simulate the role of students and to
assess homework quality. Mi et al. [126] propose a probabilistic graphical model to aggregate
peer grading. Their method considers an online course setup and models both the student
and the grader’s reliability, imposing a probabilistic relationship between the reliability of a
student and the true grade. Carbonara et al. [34] model the peer grading process in MOOCs as
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an audit game where students play the role of attackers and the course staff play defenders.
In the context of crowdsourcing, Labutov et al. [99] propose a framework that fuses both
task execution and grading. They adopt an Expectation Maximization algorithm to aggregate
the grading by inferring both worker’s reliability and task difficulty. From a methodological
perspective, our framework is different from those aforementioned methods in that we take a
human-AI approach that integrates peer grading and a supervised machine learning model,
which is important for both improving the accuracy of review conformity and for reducing
manual efforts.

4.3 The PGPR Framework

In this section, we introduce our proposed Bayesian PGPR framework that learns to predict the
conformity of reviews from a few peer-graded reviews as well as from historical data (reviews
and decisions) of a given venue. We first formally define our problem and then describe
our overall framework, followed by our variational inference algorithm for learning PGPR
parameters.

4.3.1 Notations and Problem Formulation

Notations

Throughout this chapter, we use boldface lowercase letters to denote vectors and boldface
uppercase letters to denote matrices. For an arbitrary matrix M , we use Mi , j to denote the
entry at the i -th row and j -th column. We use capital letters (e.g., P ) in calligraphic math font
to denote sets and |P | to denote the cardinality of a set P .

Table 4.1 summarizes the notations used throughout this chapter. We denote the set of reviews
with I and the set of graders as G . We restrict I to include only the graded reviews without
ground truth of conformity – our framework can be initialized with any number of reviews
with ground truth, thereby utilizing historical data (see Section 4.3.4). For each review i 2I ,
we extract a set of features as described in detail in Section 4.5.1 and denote the resulting
vector by xi . We use Ai ,g to denote the grade given by grader g 2 G when reviewing i 2 I .
Due to the fact that an individual grader can only grade a limited number of reviews, A is a
sparse matrix where only a small proportion of the entries are known.

Problem Definition

Let I be the set of reviews, where each review i 2I is represented by a feature vector xi . Let
A be the grader-review matrix where each element Ai ,g is a grade given by a grader g 2G to a
review i . Our goal is to infer the conformity score zi for all reviews i 2I using xi and A.
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Table 4.1: Notations.

Notation Description
I Set of reviews
G Set of graders
A Grader-Review matrix
xi Feature vector of a review
zi Review conformity distribution
rg Grader reliability distribution
bg Grader bias distribution
µi ,æi Parameters of the review conformity distribution
Ag ,Bg Parameters of the distribution of grader reliability
mg ,Æg Parameters of the distribution of grader bias

4.3.2 PGPR as a Bayesian Model

PGPR is a unified Bayesian framework that integrates a machine learning model –modeling
review conformity from features– with peer grading for predicting review conformity. Once
trained, the machine learning part of PGPR can be used alone to predict conformity of reviews
without peer grading.

The overall framework is depicted as a graphical model in Figure 4.1. It models review confor-
mity from both the features (through the machine learning model) and peer grading, which is
modeled as a process conditioned on the review conformity and grader properties (i.e., relia-
bility and bias). In the following, we first describe how a machine learning model is embedded
into PGPR and then describe the grading process and its integration into our framework.

Learning Conformity

We model review conformity zi with a Gaussian distribution:

zi ªN (µi ,æi ), (4.1)

where µi and æi are the mean and the variance of the distribution, respectively. µi is predicted
from the review features xi through a neural network of arbitrary architecture.

µi = softmax( f W (xi )), (4.2)

where the function f W (xi ) models the output of the network layers preceding the softmax
layer, parameterized by W shared across all reviews. The variance æi of the Gaussian distri-
bution is automatically learned through our inference algorithm (described in Section 4.3.3).
Unlike normal supervised settings, we do not have the ground truth of review conformity µi ;
instead, we are given a set of review grades, which we model next.
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Figure 4.1: Graphical representation of PGPR. Double circles represent observed variables,
while single circles represent latent variables. Squares represent model parameters. Edges
represent conditional relationships in text classification. On the left-hand side, a machine
learning model parameterized by W predicts the conformity zi of a review. Each review is
represented with a feature vector xi . On the right-hand side, a grader is represented with her
reliability distribution rg with parameters Ag and Bg and her bias bg with Æg as a prior. The
grader assigns a review with grade Ai ,g .

Modeling Review Grades

We model the grading process by considering two important properties of graders, namely
reliability and bias. In practice, we would like to have a measure of confidence in estimating
the reliability and bias of the graders grading different numbers of reviews: we should be more
confident in estimating the reliability and bias of graders who grade 50 reviews than those
who grade 5 reviews only. To quantify the confidence in our inference, we adopt a Bayesian
treatment when modeling both grader properties by introducing prior distributions.

Specifically, we denote the grader reliability by rg (g 2G ) and model it with a Gamma distribu-
tion: a higher value indicates a better ability to provide accurate grades.

rg ª °(A,B), (4.3)

We consider grader bias as the tendency of a grader to give high or low conformity scores to
reviews. We denote the grader bias by bg (g 2G ) and model it using a Gaussian distribution.

bg ªN (m,
1
Æ

). (4.4)
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Integrating Machine Learning with Peer Grading

We define the likelihood of a grader g giving a score Ai ,g to review i as a probability condi-
tioned on the grader’s reliability rg , the bias bg , and the conformity of the review zi .

p(Ai ,g |zi ,rg ,bg ) =N (zi +bg ,
1

rg
) (4.5)

The conditional probability in Eq. (4.5) formalizes the following intuitions: i) a grader with a
bias bg > 0 (or bg < 0) is likely to overestimate (or underestimate) the conformity of a review,
whereas a grader with a bias bg º 0 has a more accurate estimation of review conformity; and
ii) a grader with a high reliability rg is likely to give a conformity score with a small deviation
from the true conformity.

4.3.3 Variational Inference for PGPR

Learning the parameters of PGPR resorts to maximizing the following likelihood function:

p(A) =
Z

p(A,z,r,b|X ;W )dz,r,b, (4.6)

where z is the latent conformity scores for all the reviews, and r and b are the latent reliability
scores and biases for all graders. X represents the feature matrix of all reviews and W is the
set of machine learning parameters.

Since Eq. (4.6) contains more than one latent variable, it is computationally infeasible to
optimize [195]. Therefore, we consider the log of the likelihood function, i.e.,

log p(A) =
Z

q(z,r,b)
p(A,z,r,b|X ;W )

q(z,r,b)
dz,r,b

| {z }
L (W ,q)

+
Z

q(z,r,b)
q(z,r,b)

p(z,r,b|A,X ;W )
dz,r,b

| {z }
K L(q||p)

,

(4.7)

where K L(·) is the Kullback Leibler divergence between two distributions. The log likelihood
function in Eq. (4.7) is composed of two terms. Using the variational expectation-maximization
algorithm [195], we can optimize the objective function iteratively in two steps: 1) the E-step,
where we minimize the KL-divergence to approximate p(z,r,b|A,X ;W ) with the variational
distribution q(z,r,b); and 2) the M-step, where we maximize the first term L (W , q) given the
newly inferred latent variables. In the following, we describe both steps.
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E-step Using the mean-field variational inference approach [26], we assume that q(z,r,b)
factorizes over the latent variables:

q(z,r,b) =
Y

i2I

q(zi )
Y

g2G

q(rg )
Y

g2G

q(bg ). (4.8)

To minimize the KL divergence, we choose the following forms for the factor functions:

q(zi ) =N (µi ,æi ), q(rg ) = °(Ag ,Bg ), q(bg ) =N (mg ,
1
Æg

), (4.9)

where µi ,æi , Ag ,Bg ,mg ,Æg are variational parameters used to perform the optimization and
minimize the KL-divergence.

In the following, we give the update rules for each of the latent variables. We first give the
update rules for review conformity zi by the following lemma.1

Lemma 3 (Incremental Update for Review Conformity). The conformity distribution q(zi )
follows a Gaussian distribution and can be incrementally computed using the grade, the grader
reliability, and the review conformity from the previous iteration:

q(zi ) ªN (
W
V

,
1
V

), (4.10)

where:
8
<
:

W =P
g

Ag

Bg
(Ai ,g °mg )+ µi

æ2
i

,

V = (
P

g
Ag

Bg
+ 1
æ2

i
).

Next, we show the updating rules of grader’s reliability and bias.

Lemma 4 (Incremental Update for Grader Reliability). The update of the grader reliability
q(rg ) follows a Gamma distribution with parameters that can be incrementally updated using
the conformity of reviews she graded, her bias and her reliability from the previous iteration:

q(rg ) ªGamma(X ,Y ), (4.11)

where:

(
X = Ag+

|Ig |
2 ,

Y = Bg+1
2 (

|Ig |
Æg

+P
i [A2

i ,g +æ
2
i +2µi (mg °Ai ,g )°2Ai ,g mg ]).

Lemma 5 (Incremental Update for Grader Bias). The bias of the graders q(bg ) follows a Gaus-
sian distribution with parameters that can be incrementally updated using the review confor-

1Proofs for all the lemmas are given in the appendix.
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Algorithm 3: Learning PGPR Parameters
Input :Grader-Review matrix A, Review features matrix X
Output :Parameters of the PGPR framework:

µi , æi , Ag , Bg , mg , Æg , W

1 Initialize PGPR parameters ;
2 while log p(A) has not converged do
3 for i 2I do
4 update q(zi ) using Lemma 3;

5 for g 2G do
6 update q(rg ) using Lemma 4;
7 update q(bg ) using Lemma 5;

8 for i 2I do
9 Update W using back-propagation;

mity, the grader reliability and her bias from the previous iteration:

q(bg ) ªN (
L
K

,
1
K

), (4.12)

where:
8
<
:

K = Ag |Ig |
Bg

+Æg ,

L =Æg mg +
Ag

Bg

P
i (Ai ,g °µi ).

M-step Given the conformity of a review, the grader reliability and bias inferred in the E-step,
the M-step maximizes the first term of Eq. (4.7) to learn the parameter W of the machine
learning model:

L (W , q) =
Z

q(zi ,rg ,bg ) log p(Ai ,g , zi ,rg ,bg |xi ;W )d zi ,rg ,bg +C

=
Z

q(zi ,rg ,bg ) log[p(Ai ,g |zi ,rg ,bg )p(zi |xi ;W )]d zi ,rg ,bg +C

=
Z

q(zi ,rg ,bg ) log p(Ai ,g |zi ,rg ,bg )d zi ,rg ,bg
| {z }

M1

+
Z

q(zi ) log p(zi |xi ;W )d zi
| {z }

M2

+C

(4.13)

where C = Eq(zi ,rg ,bg )log ( 1
q(zi ,rg ,bg ) ) is a constant. Only the second part of L (W , q), i.e., M2,

depends on the model’s parameters. M2 is exactly the inverse of the cross-entropy between
q(zi ) and p(zi |xi ;W ), which is widely used as the loss function for many classifiers. M2 can,
therefore, be optimized using back-propagation.
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4.3.4 Algorithm

The overall optimization algorithm is given in Algorithm 3. We start by initializing the param-
eters of each probability distribution and of the machine learning model. Then, we iterate
between the E step (rows 3-7) and the M step (rows 8-9). The E step consists of updating the
variational distributions of the review conformity q(zi ), the grader reliability q(rg ) and her
bias q(bg ). The M step consists of updating the parameters W of the machine learning model
using back-propagation. The convergence is reached when the review conformity q(zi ) is no
longer modified by the grader reliability and bias. Note that when some reviews with ground
truth conformity are available, the machine learning model can be trained first to obtain an
initialization of W , which will then be updated further by Algorithm 3. Once the learning
algorithm terminates, the machine learning model of PGPR can be taken out to assess the
conformity of any review.

The iterations in rows 3-4 require a time complexity of |I | and the iterations through all graders
yield a time complexity of |G |. The overall complexity of our algorithm is O(#i ter (|I |+ |G |+
CW ) where #i ter is the total number of iterations needed until convergence and CW is the
complexity to learn the parameters of the machine learning model.

4.4 Task Design for Grading Reviews

In this section, we present our design for the review grading task, which is used to collect
data for evaluating our proposed framework. Due to the privacy concern, submissions and
review information in most venues are not publicly available. Fortunately, we have access
to such an information in two venues, on which we conduct a small-scale experiment with
expert reviewers to evaluate the effectiveness of peer grading in measuring review conformity.
Evaluating our proposed PGPR framework, however, requires more grading than those we
can collect from expert reviewers. We conduct a larger-scale crowdsourcing study, in which
we collect worker grading to approximate the grading from expert reviewers and use those
grading for evaluating PGPR.

This section focuses on the task design of grading reviews for both expert and crowd scenarios.
We present an analysis on the effectiveness of grading from both expert reviewers and crowd
workers in the next section. In the following, we first identify a set of criteria for review
conformity assessment and then describe the setup of the grading task.

4.4.1 Criteria for Review Conformity

We compile a list of eight criteria for review conformity from the literature, a set of review
guidelines published by journals and conferences [72, 1, 152], and guidelines from publishers
such as Springer [183] or Nature Research [133]. Those criteria are grouped into the following
three categories.
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Figure 4.2: Ranking of review criteria.

• Clarity. The clarity of a review resides in three main aspects. 1) Structure: it is often
imposed that the review should contain a summary of the paper, the decision, and
supporting arguments for this decision. 2) Length: a review should be of adequate length
to provide sufficient information for the meta-reviewer to understand the reviewer’s
recommendation [140]. 3) Justification: a review should include supporting arguments
of the decision, by including pointers to prior work as well as references to specific parts
of the paper on which the score is based [72].

• Consistency. The consistency of a review is defined by three aspects. 1) Score: the
recommended score should be supported by at least one or two justifications. 2) Claims:
there should be no contradiction between the summary and the stated weak or strong
claims. 3) Confidence: the reviewer should make a clear acknowledgement when certain
aspects of a paper are beyond her expertise [72].

• Objectivity. A review should be fair and provide constructive critiques. 1) Fairness: A
review should not be biased towards irrelevant factors such as assigning a low score
because of missing references from the reviewer’s own work only2. 2) Offensiveness: A
review should cover the technical work rather than giving personal statements and/or
offensive terms [72].

To understand the importance of those criteria, we initially conducted an online survey with
38 expert reviewers from two international venues: SEMANTICS (SEM) (2019 edition) and the
International Workshop on Decentralizing the Semantic Web (DSW) (2017 and 2018 editions).
We asked the expert reviewers to rate the importance of each individual criterion and the three
categories on a 5-point Likert scale and show the results in Figure 4.2. We observe that clarity
ranked the highest (by 28 expert reviewers) and, in particular, that justification is viewed as
the most important aspect of a high-conformity review. Consistency is equally important to

2https://www.seas.upenn.edu/ nenkova/AreaChairsInstructions.pdf
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objectivity. While many agree that objectivity is not a deterministic aspect, half of the experts
admit having received or read unfair reviews while few have received offensive ones. In fact, 24
expert reviewers rank fairness as equally or more important than offensiveness. These results
indicate that the experts consider review fairness as an important concern.

4.4.2 Task Design

For each of the reviews we consider in our work, we ask participants to provide ratings for
each of the eight conformity criteria, grouped in three sections corresponding to the three
categories introduced above. In the crowdsourcing scenario, we recruit from Amazon MTurk
workers with a “Master” qualification, i.e. workers who have demonstrated high degree of
success in performing a wide range of tasks across a large number of requesters. The task
starts by explaining how a scholarly review is presented, the criteria (on a category level),
followed by a positive and a negative example. Then, we show workers a review and ask them
to rate each criterion from 1 to 4 with 4 being the best rating. We set the range to be 1-4
instead of 1-5 as we found in a preliminary study that workers tend to favor 3 in the latter case.
Each rating question is accompanied with an information box that explains the aspect to rate.
For questions regarding justification, fairness and offensiveness, we ask workers to provide a
snippet from the review as a rationale justifying their grading decision [125]. The rationale
can be used as an explanation for the conformity score assigned to the review. For attention
check, we ask workers to identify the recommendation decision from the review; results of
workers who fail at recognizing review decisions are excluded. After getting their ratings, we
ask the workers to enter feedback in free text. Each review is rated by three different workers.
The task takes approximately 12 min to complete. Workers who completed the task received a
reward of 1.8 USD.

In the expert scenario, the task is simplified to include only the rating for each of the criteria.
The peer grading of scholarly reviews is implicit in the current peer review systems: each
reviewer is supposed to read the reviews from other reviewers and decide whether to keep
her original recommendation or not; however, they are typically not required to express
their opinion about other reviews explicitly. We assume explicit peer grading can stimulate
reviewers to look into other reviews and promote the quality of the discussions afterwards. We
show in the next section through an experiment with real expert reviewers that the peer grading
is effective when used to weight the reviewers’ recommendation scores in score aggregation,
which approximates meta-decisions better than existing aggregation methods, e.g., weighted
average by reviewers’ self-indicated confidence.
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Table 4.2: Description of the ICLR Datasets. #Misalign. sub. is the number of submissions
to which there is at least a review with decision misaligned with meta-decision; #Misalign.
reviews is the overall number of not-aligned reviews.

Edition #sub. #Misalign. sub. #Misalign. reviews
2017 506 169 530
2018 846 355 1072
2019 1565 670 2060

4.5 Experimental Results

This section presents the results of our empirical evaluation3. We first conduct a preliminary
analysis to understand the effectiveness of expert and worker grading, then evaluate the
performance of our PGPR framework by comparing it against the state of the art. Finally, we
perform an in-depth analysis of PGPR’s main properties. We answer the following questions:

• Q1: How effective is expert and worker grading in assessing review conformity? (Sec-
tion 4.5.2).

• Q2: How effective is our proposed human-AI approach in predicting review conformity?
(Section 4.5.3).

• Q3: How effective is our framework in leveraging peer grading compared to majority
voting? (Section 4.5.4).

• Q4: How effective is peer grading in improving the conformity prediction over time
when more reviews with ground truth decisions become available? (Section 4.5.5).

4.5.1 Experimental Setup

Datasets

We collect data from the ICLR conference, which provides open access to reviews and evalua-
tion scores for all submissions through OpenReview4. We collected reviews for all submissions
to the ICLR conference from 2017 until 2019. Our ICLR dataset contains in total 2917 sub-
missions and 8838 reviews. 1194 papers have at least one review that is misaligned with the
meta-decision. In our study, we are mainly interested in those cases as they require some
additional effort when reaching a final decision. Key statistics on the collected dataset are
reported in Table 4.2.

3Source code and data are available at https://github.com/eXascaleInfolab/pgpr.
4https://openreview.net/
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Active Selection of Reviews for Grading

We leverage active learning to select a subset of the most informative reviews from the ICLR-
2018 and 2019 datasets for grading: for each year, we apply the model trained in the previous
year to all reviews in the current year, and select the reviews on which the model prediction is
most uncertain (measured by the entropy of the predicted probability) for crowdsourcing. We
select the top-30% (321) reviews and top-5% (103) reviews from ICLR-2018 and ICLR-2019,
respectively, and show in our experiments that those numbers are sufficient for the model to
converge to optimal performance. We refer to the selected reviews as “uncertain” reviews and
the rest as “certain” ones. We investigate in our experiments the performance of PGPR on both
categories as well as the impact of the number of graded uncertain reviews on model training.
In total, we crowdsourced a subset of 444 reviews in 2018 and 2019 and collected 1093 grades
from 64 crowd workers on those selected reviews.

Data Split

To simulate the real-world application of PGPR, we evaluate it on different editions of the ICLR
conference as follows: for each year (2018 or 2019), we assume the reviews and the ground
truth from previous years are known, while for the current year only the reviews are available
without the ground truth. For a subset of the reviews in the current year, we collect grading
from workers. The training data, therefore, contains reviews and decisions from the previous
years, and some reviews with crowd labels from the current year. We take reviews with the
ground truth of the current year and equally split it into validation and test sets.

Label Extraction

We consider the ground truth of a review conformity as a binary variable indicated by the
alignment between a reviewer decision and the meta-reviewer decision: when both the
reviewer and the meta-reviewer decide to accept or reject a paper, the ground truth for the
review is set to 1, otherwise to 0. Our model predicts for each review a value between 0 and
1 describing the probability of the review being conform. The higher the value, the higher
the likelihood of the review to be conform. For the grades collected from crowd workers, we
map it to the interval [0,1] using the function t (x) = (x°1)/4, so that the range of valid grading
matches the range of our model’s predictions.

Neural Architecture and Features.

The inputs of our machine learning model are hand-engineered features along with embed-
dings of the sentences in a review. For the hand-engineered features, we extract for each review
the decision score, the confidence score, and their difference with the decision and confidence
scores of the other reviews on the same paper. We also compute the review’s length, the num-
ber of citations within the review, and the number of keywords referring to a paper’s content
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(e.g., equation, section, figure). For the textual embeddings, we represent each sentence as a
fixed-size vector by leveraging the pre-trained language model SciBERT [20]. These inputs are
fed to the machine learning component of our framework consisting of a multi-input model
we call “Mix-model”. It includes both an attention-based model for the review’s embedding
and a logistic regression for the review’s statistical features. We concatenate the output of
the attention-based model and logistic regression and use a fully connected layer with tanh
activation followed by a linear layer; the output is generated by a softmax function (Eq. 4.2).

Comparison Methods.

We compare our approach against the most applicable techniques for review’s conformity as-
sessment. We first compare against classification methods designed for the scholarly domain:
1) MILNET [207], a Multiple Instance Learning (MIL) neural model used to classify scholarly
reviews (originally for sentiment analysis). 2) SciBERT [20], a self-attention-based neural
language model pre-trained on scientific text consisting of publications from the computer
science and biomedical domains. 3) DoesMR [66], a Logistic Regression model that takes
hand-engineered features from scholarly reviews for prediction. In addition, we compare
against models developed for non-scholarly review tasks, including a general-purpose lan-
guage model and two models originally developed for predicting the helpfulness of product
reviews: 4) ALBERT [104], a pre-trained language model for various NLP tasks, taking into ac-
count inter-sentence coherence to capture fine-grained information in documents including
reviews. 5) PCNN [139], a convolutional neural model with context encoding. 6) RAHP [232],
an attention-based model relying on a bidirectional LSTM to capture the sequential depen-
dencies in text. For DoesMR, in addition to the original features, we include all features used
by our method, such as the number of citations within the review and the number of keywords
referring to a paper’s content. All other methods use only textual data and hence cannot
leverage hand-engineered features.

We also compare PGPR with its variant Mix-model that only consists of the machine learning
component. Note that in Mix-model, the attention-based model used for the review’s em-
bedding is the same model used to evaluate SciBERT and the logistic regression used for the
hand-engineered features is similar to DoesMR. All the comparison methods are trained using
the same training data, i.e., historical reviews with decisions and new reviews with worker
grading, which are aggregated by majority voting.

Parameter Settings.

For all the comparison methods, we tune the hyperparameters on the validation set. This
includes the learning rate searched in {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}, and the batch size in {8, 16,
32, 64}. For RAHP and PCNN, we vary the dimension of the embedding vector in {50, 100, 200,
300}. We train the models for a maximum of 500 epochs and take the versions that achieve
the best performance on the validation set. For PGPR, after concatenating the output from
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Table 4.3: Accuracy of approximating meta-decisions with average review scores and weighted
average by self-reported confidence, expert grading, and worker grading.

Method SEM DSW ICLR

Average 0.33 0.60 0.69
Confidence-weighted 0.50 N A 0.70
Grade-weighted (Experts) 0.83 0.80 N A
Grade-weighted (Workers) N A 0.80 0.73

the attention-based model and logistic regression, we use a fully connected layer with tanh
activation and ten neurons.

Evaluation Metrics

We measure the effectiveness of expert and worker grading in assessing review conformity
by the accuracy of approximating meta-decisions with the grading-weighted average of re-
viewers’ recommendation scores. Given a set of reviews R on the same paper, we denote the
recommendation score of a review r 2R to the paper by sr and the average grading the review
receives by gr . The aggregated score of R is given by:

sR =
P

r2R gr srP
r2R gr

. (4.14)

To measure the performance of PGPR and our baselines, we use accuracy, precision, recall
and F1-score over the positive class. Higher values indicate better performance.

4.5.2 Preliminary Analysis on Peer Grading

We verify the effectiveness of peer grading on review conformity by expert reviewers and by
crowd workers. We use the grading to weight reviewers’ recommendation scores in score
aggregation, and compare to other aggregation methods. We compute the accuracy of approx-
imating meta-decision with the aggregation result.

Grading Reviews by Experts

For our first experiments, we select seven and five borderline papers from SEM and DSW,
respectively. We only consider the borderline papers on which reviewers have some disagree-
ment over their recommendations. Reviews from DSW papers are publicly available through
OpenReview. For SEM, as the reviews are not publicly available, we contacted the reviewers to
get their consent before sharing them with their peers. For both venues, we asked the original
reviewers of the same paper to grade each other’s reviews. 21 reviewers were involved for SEM
providing one review each and 12 reviewers were involved for the DSW papers providing in
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Table 4.4: Performance (Accuracy, Precision, Recall and F1-score) comparison with baseline
methods. The best performance is highlighted in bold; the second best performance is marked
by ‘*’.

Method
ICLR-2018 ICLR-2019

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
MILNET 0.533 0.580 0.770 0.660 0.528 0.560 0.860* 0.670
DoesMR 0.678* 0.710* 0.782 0.740* 0.747* 0.752* 0.838 0.792*
SciBERT 0.540 0.678 0.434 0.524 0.583 0.604 0.778 0.680
ALBERT 0.548 0.652 0.516 0.570 0.567 0.590 0.782 0.670
PCNN 0.523 0.624 0.508 0.562 0.516 0.570 0.645 0.605
RAHP 0.593 0.612 0.784* 0.688 0.501 0.570 0.515 0.540
PGPR 0.781 0.822 0.810 0.810 0.799 0.770 0.917 0.840

total 16 reviews. Results are shown in Table 4.3. We observe that the grade-weighted average
of the reviews’ recommendations is better at approximating meta-decisions than other means
of aggregating review scores. The result verifies that peer grading is a better indicator of review
conformity than self-reported confidence scores and can be leveraged to better approximate
meta-decisions than existing aggregation methods.

Grading Reviews by Crowd Workers

For this experiment, we use the DSW and ICLR datasets. We do not consider the reviews
from SEM since those reviews are not public. Results are shown in Table 4.3. We observe
that for both venues, the weighted average leveraging worker grading better approximates
meta-decisions than the weighted average by self-reported confidence scores or the average
without the weighting. Worker grading achieves comparable results to expert grading on DSW
reviews. To further compare worker grading with expert grading in ICLR, we derive the peer
grading according to the agreement between the reviews’ recommendation scores: the mutual
grading between two reviewers is set to 4 if they gave the same score; if two reviewers have the
same decision (e.g., an accept) with different scores, then we set their mutual grading to 3;
if two reviewers have different decisions with a small difference between their scores (e.g., a
weak accept and a weak reject), we set their mutual grading to 2; otherwise the mutual grading
is set to 1. We calculate the average grading to the same review by workers and experts and
observe that on 67% of the reviews, worker grading is similar to expert grading (difference < 1).
We also observe that workers and experts have a higher agreement on assigning high grades
rather than low ones and that workers tend to be more “generous" in grading reviews. Overall,
those results are aligned with related work showing that crowd workers in carefully-designed
tasks can provide satisfying outcomes on domain-specific problems [24, 97].
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4.5.3 Comparison with the State of the Art

Table 4.4 summarizes the performance of PGPR against all the comparison methods on both
ICLR-2018 and ICLR-2019. We make several observations.

First, we observe that among the comparison methods, DoesMR outperforms the other em-
bedding or deep neural network models. Recall that DoesMR relies on hand-engineered
features from scholarly reviews. The result indicates the effectiveness of hand-engineered
features as compared to automatically-learned representations in predicting review confor-
mity. This is likely due to the similarity of the vocabulary used in most reviews, making review
content alone not highly predictive of review conformity. In contrast, we find through DoesMR
that hand-engineered features such as the relative strength of a review recommendation
(and confidence) with respect to other reviews on the same paper are highly predictive of
the review conformity. Second, we observe that methods developed for modeling scholarly
reviews generally outperform those for modeling non-scholarly reviews. In particular, deep
neural networks for predicting the helpfulness of product reviews, i.e., PCNN and RAHP, gen-
erally reach the lowest performance. These results indicate that models developed in other
domains cannot be easily transferred to assess review conformity. Among the two pre-trained
language models SciBERT and ALBERT, we observe that SciBERT, which is pre-trained on
corpora including computer science publications, does not necessarily outperform ALBERT.
Such a result indicates that language models pre-trained on scientific publications are not
necessarily effective for modeling scholary reviews.

Most importantly, PGPR achieves the best performance on both datasets. Overall, it improves
the second best method by 15.19% accuracy and 9.46% F1-score on ICLR-2018 and by 6.51%
accuracy and 6.06% F1-score on ICLR-2019. Such a result underlines the effectiveness of our
approach in integrating peer grading into model training. The relatively lower improvement
on ICLR-2019 compared to that on ICLR-2018 is likely due to the larger historical data with
ground truth available for training, which we investigate latter in our experiments.

4.5.4 Ablation Studies & Uncertain Reviews

The comparison between PGPR and machine learning baselines is shown in Figure 4.3. The
Mix-model, which consists of the machine learning component of PGPR, outperforms both
DoesMr and SciBERT by 11.5% and 40.9% accuracy and by 5.8% and 33.5% F1-score, respec-
tively. These results show the complementary predictive power of hand-engineered features
and embeddings. We observe that PGPR outperforms the Mix-model by 5.3% accuracy and by
2.8% F1-score on average on both datasets. This result indicates that using worker’s grading
improves substantially the model performance. We also observe that PGPR outperforms
Mix-model additionally trained with workers grading (aggregated by majority voting), i.e.,
Mix-model+MV, by 4.8% accuracy and 2.47% F1-score. These results show that PGPR is better
at utilizing worker’s grading for conformity prediction by taking into account worker reliability.
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Figure 4.3: Comparison between PGPR and machine learning baselines measured by (a)
Accuracy and (b) F1-score.

Table 4.5: Analysis of PGPR performance in terms of accuracy on certain and uncertain reviews.

Method
Dataset

ICLR-18 ICLR-19
all certain uncertain all certain uncertain

Mix-model 0.752 0.845 0.510 0.793 0.801 0.764
PGPR 0.781 0.846 0.630 0.799 0.801 0.807

Table 4.5 shows a breakdown comparison between the performance of Mix-model and PGPR
using the uncertain (actively selected) and certain reviews. We observe that PGPR outperforms
the Mix-model by 23.53% and by 5.63% on the uncertain reviews from ICLR-2018 and ICLR-
2019, respectively. We also observe that PGPR has little improvement over Mix-model on
the certain reviews. These results show that considering workers’ grading is important in
predicting the conformity of uncertain reviews accurately while having little effect on certain
ones. We also find that despite the importance of worker’s grading in PGPR, the grading alone
is not sufficient to predict the conformity of reviews. Using a majority aggregation of grading
on the uncertain reviews leads to an accuracy of 0.61 and 0.73 on ICLR-2018 and ICLR-2019,
respectively; i.e., less by 3.17% and 9.54% than our framework’s performance. This result shows
that combining workers grading with machine learning is crucial for an accurate prediction of
review’s conformity.

4.5.5 Grading Effect Over Time

The key advantage of our framework is leveraging peer grading for conformity prediction. In
what follows, we study the impact of varying the amount of graded reviews on the performance
of our framework. We measure the impact on PGPR performance by varying the percentage of
the actively selected reviews. We split the graded reviews by sact where we vary sact between
0% and 100%, where sact = 50% means that we use 50% of the graded reviews in addition to
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Figure 4.4: Performance of PGPR over the two years (2018-2019) with an increasing number of
actively graded reviews.

the historical data for training. The results are shown in Figure 4.4 where we use the same
y-scale for ICLR-2018 and ICLR-2019 for ease of comparison. We observe that the performance
of our framework increases along with the increase of sact on the ICLR-2018 dataset while
it gradually stabilizes with the increase of sact on the ICLR-2019 data. This on one hand,
confirms the effectiveness of integrating peer grading for model performance. On the other
hand, using PGPR in subsequent editions of the same conference requires less grading from
one year to the next, as it gradually “learns" the conformity standards of the conference. This
property is highly desirable in real-world scenarios as with the increase of the number of
submissions (and consequently the number of reviews) our model improves its prediction on
the conformity of reviews while requiring fewer reviews to be graded.

4.6 Conclusion

In this chapter, we presented a human-AI approach that estimates the conformity of scholarly
reviews by leveraging both human and machine intelligence. We introduced peer grading
mechanisms that involve peer reviewers to grade each others’ reviews anonymously and a
Bayesian framework that seamlessly integrates peer grading with a machine learning model
for review conformity assessment. The peer grading mechanism can be easily incorporated
into current peer review systems without inducing much extra effort from the reviewers. The
machine learning model trained by the Bayesian framework can continuously learn from new
grading from peer reviewers over time. Through a crowdsourced, longitudinal study over a
three years-worth dataset, we showed that our approach substantially improves the state of
the art and that the machine learning in our framework can largely improve the performance
over three consecutive years.
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4.6 Conclusion

The proposed frameworks OpenCrowd and PGPR allow us to evaluate open-ended answers
and estimate the reliability of workers. We showed that they perform better than machine
learning or human contributors working alone. Nonetheless, end-users without prior knowl-
edge might still have reservations about using these frameworks in real-world scenarios
because they do not fully understand the method’s reasoning. This lack of transparency is
not a specific problem of our frameworks but common to many state-of-the-art methods.
This problem is raising significant attention, and many efforts are dedicated to pushing for
explainable methods. In the next chapter, we contribute to this line of work and propose
a hybrid human-AI approach that incorporates human rationales into a machine learning
model to improve the explainability of its results.
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5 MARTA: Leveraging Human Rationales for
Explainable Text Classification

Explainability is a key requirement for text classification in many application domains ranging
from sentiment analysis to medical diagnosis or legal reviews. Existing methods often rely
on “attention" mechanisms for explaining classification results by estimating the relative
importance of input units. However, recent studies have shown that such mechanisms tend to
misidentify irrelevant input units in their explanation.

In this chapter, we propose a hybrid human-AI approach that incorporates human rationales
into attention-based text classification models to improve the explainability of classification
results. Specifically, we ask workers to provide rationales for their annotation by selecting
relevant pieces of text. By doing so, we couple a boolean task (i.e., text classification) with an
open-ended task (i.e., text justification) and leverage both annotations in our approach.

At the technical level, we introduce MARTA, a Bayesian framework that jointly learns an
attention-based model and the reliability of workers while injecting human rationales into
model training. We derive a principled optimization algorithm based on variational inference
with efficient updating rules for learning MARTA parameters. Extensive validation on real-
world datasets shows that our framework significantly improves state-of-the-art both in terms
of classification explainability and accuracy.

5.1 Introduction

Text classification is a fundamental task in natural language processing (NLP) [233, 221, 10].
State-of-the-art methods are dominated by neural network models, which are generally con-
sidered as “black boxes” by end-users. The opaqueness of those models has become a major
obstacle for their development, deployment, and improvement, particularly in critical tasks
such as medical diagnosis [102] and legal document review [44, 122]. Explainable text classifi-
cation has, therefore, emerged as an important topic, where the goal is to present end-users
with human-readable descriptions of the classification rationale [160, 184, 32, 116].

Among existing explainability methods, a popular approach is the attention mechanism,
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Figure 5.1: The MARTA Framework

which identifies important parts of the input for the prediction task by providing a distribution
over attended-to input units (e.g., tokens or sentences) [217, 13]. Attention-based models
have resulted in impressive performance across many NLP tasks including text classification,
question-answering, and entity recognition [13, 147, 209]; in particular, the self-attention
mechanism that underlies the Transformer architecture [197, 53] has been playing a central
role in many NLP systems. Despite that, recent studies have shown that the learned attention
weights are often uncorrelated with the importance of input components measured by other
explainability methods (e.g., gradients [178]), and that one can identify different attention
distributions that nonetheless yield equivalent predictions [78, 215].

A promising approach to enhance the explainability of attention-based models is integrating
human rationales as extra supervision information for attention learning. Prior research [226,
233] has shown that human rationales represent valuable input for improving model perfor-
mance and for identifying explainable input features in model prediction [13, 132]. Coinci-
dentally, recent studies in human computation [125] have demonstrated that asking workers
to provide annotation rationales – by highlighting supporting text excerpts from the given
text – brings no extra annotation efforts. Human rationales are, therefore, easy-to-obtain
information with great potential in improving model explainability and performance. Existing
work [13, 132], however, takes human rationales as gold information that is entirely trustwor-
thy, which is typically not the case in practice; indeed, studies from human computation have
found the reliability of human-contributed rationales to be a key problem that requires careful
treatment [226, 157].

In this work, we tackle the problem of rationale reliability by introducing a human-AI com-
putational approach that integrates human rationales into an attention-based model while
weighing individual reliability. We crowdsource the task of annotating documents and ask
workers to justify their labels using text excerpts from the document. We introduce MARTA, a
Bayesian framework that jointly learns the workers’ reliability and the attention-based model
parameters while MApping human Rationales To Attention. The model parameters and
worker reliability are updated in an iterative manner, allowing their learning processes to
benefit from each other until agreements on both the label and rationales are reached. The
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overall process is depicted in Figure 5.1. We formalize such a learning process with a principled
optimization algorithm based on variational expectation-maximization. In particular, we
derive efficient updating rules that allow both model parameters and worker reliability to be
updated incrementally at each iteration.

In summary, we make the following contributions:

• We propose MARTA, a Bayesian framework for explainable text classification that inte-
grates human rationales into attention-based models.

• We derive an efficient learning algorithm based on variational inference with incremen-
tal updating rules for MARTA parameter estimation.

• We conduct an extensive evaluation on two real-world datasets and show that MARTA
substantially outperforms the state of the art by 5.76% F1-score while offering a human-
understandable explanation.

5.2 Related Work

5.2.1 Explainable Text Classification

Driven by the need for transparency, machine learning explainability has drawn significant
attention recently [160, 56]. Existing explainability methods fall into two broad categories:
post-hoc explainability and intrinsic explainability. Post-hoc explainability aims at providing
explanations for an existing model. A representative method is LIME [160], which approxi-
mates model decisions with an explainable model (e.g., a linear model) in the local area of the
feature space. A recent development of this topic is GEF [116], which is designed to explain a
generic encoder-predictor architecture by jointly generating explanations and classification
results. Another class of methods identifies important features by calculating the gradient of
an output with respect to an input feature to derive the contribution of the various features
[178, 163, 6]. Intrinsic explainability aims at constructing self-explanatory models. This can
be achieved by adding explainability constraints in model learning to enforce feature sparsity
[63], representation disentanglement [230], or sensitivity towards input features [184]. Our
work falls into this second category by injecting human rationales into model learning through
a unified Bayesian framework.

To explain individual predictions, a more popular approach is attention mechanisms, which
identify parts of the input that are attended by the model for specific predictions [217, 13].
These attention mechanisms have been playing an important role in NLP not only for explain-
ability but also for the enhancement they bring to model performance [147, 197, 53]. Their
effectiveness in explainability, however, has recently been questioned by an empirical study,
which points to the facts that attention distributions are inconsistent with the importance of
input units as measured by gradient-based methods and that adversarial distributions can be
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found yielding similar model performance [78]. Those findings have triggered heated discus-
sions, e.g., it has been shown that attention mechanisms attribute higher weights to important
input units for a given task even when the model architecture for prediction changes [215]. Our
work contributes to the discussion by showing that human rationales, when properly injected
into the attention-based models, can enhance the model explainability and performance.

5.2.2 Human Rationale in Machine Learning

The idea of incorporating human rationales for model improvement can be traced back to
Zaidan et al. (2007) [226], where a human teacher highlights pieces of text in a document
as a rationale to justify label annotation. The rationale is fused into the loss function of an
SVM classifier by constraining the prediction labels. Similar ideas have been explored for
neural network models [233] and through different ways of human rationale integration, e.g.,
by learning a mapping between human rationales and machine attention [17] or ensuring
the diversity among the hidden representations learned at different time steps [132]. The
idea of finding a small subset of input units capable of generating the same output has
resulted in various selective rationalization techniques [106, 109, 40, 38, 224]. Despite all
existing efforts, few studies have addressed the potential issues in human involvement, such
as controlling the quality of rationales contributed by humans with varying levels of expertise
and motivation. Unlike them, our framework offers a principled method to model human
reliability in integrating human rationales.

A separated line of research in human computation and crowdsourcing has investigated
the task design for soliciting human rationales in crowdsourcing settings. When gathering
relevance judgments for search results, McDonnell et al. [125] found out that by asking crowd
workers to provide 2-3 sentences of document excerpts for justification, annotation quality
can be largely enhanced without the task completion time being increased. However, it is also
known that the quality of human-contributed rationales remains a challenging issue, especially
for subjective and complex tasks [226, 157]. Aligned with these works, our work offers a
computational approach that integrates human rationales for explainable text classification
while addressing the reliability issue of rationales through a principled learning algorithm.

5.3 Method

MARTA is a unified Bayesian Framework that integrates an attention-based model with labels
and rationales contributed by workers. In this section, we first formally define our problem,
and then introduce our framework, followed by a presentation of our algorithm for learning
MARTA parameters.
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5.3.1 Problem Formulation

Notations.

We use boldface lowercase letters to denote vectors and boldface uppercase letters to denote
matrices. For an arbitrary matrix M, we use Mi , j to denote the entry at the i -th row and j -th
column. We denote the set of documents as I , the set of sentences composing all documents
as S , and the set of sentences belonging to document i as Si . We denote the set of workers
who provide noisy labels with rationales as J . The subset of workers who label document i is
denoted as Ji . We consider binary classification and use Ai , j = 1 to denote that a document i
is classified as positive by worker j , and Ai , j = 0 otherwise. We use Bs, j = 1 to denote that a
sentence s is selected as a rationale by worker j . The subset of workers who select the sentence
s as a rationale for their annotations is denoted as Js .

Problem Definition.

Let I be a set of documents, each assigned to a unique binary label representing its relevance
to a topic. Each document i 2 I is composed of a set of sentences Si that can be used as
rationale in determining the relevance of a document to the topic. Let J be a set of workers
who annotate the documents with labels A and rationales B. Our goal is to infer the true
label of a document denoted as zi while estimating the importance of each sentence s 2Si ,
denoted as Æs , in the inference.

5.3.2 The MARTA Framework

MARTA is a probabilistic framework that models the process of worker-provided labels (i.e., A)
and rationales (i.e., B), conditioned on the true labels (i.e., z), the importance of rationales
(i.e., Æ), and the reliability of workers (i.e., r ). The overall framework is depicted as a graphical
model in Figure 5.2. In the following, we first describe how an attention-based model is
embedded into MARTA to allow the integration of human rationales, and then describe the
process of worker-provided labels and answers for their integration.

Rationale-Aware Attention Model.

Given the true label of a document zi 2 {0,1} as a binary variable, we model it with a Bernoulli
distribution. The underlying intuition of our rationale-aware attention model is that the label
of a document is determined by its sentences, and that each sentence contributes differently
in determining the overall label of the document. Formally, we have:

zi ª Ber (µi ),µi =
X

s2Si

asPs , (5.1)
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Ai , j

Bs, jÆszi

Wp Wavs

r j

m
n

Worker

Document

Figure 5.2: Graphical representation of MARTA. Double (greyed) circles represent observed
variables, while single circles represent latent variables. Squares represent model parameters.
Edges represent conditional relationships in text classification. On the left side, an attention-
based model parameterized by {Wa ,Wp } predicts the label zi for a document. Each document
is composed of sentences vs , with an importance Æs in the classification. On the right side, a
worker is represented with her reliability distribution r j with parameters m and n. The work
annotates a document with label Ai , j and rational Bs, j .

where µi is the parameter of the distribution, modeled as the weighted sum of the sentence-
level label Ps with attention weight as . The sentence-level label Ps is predicted from the
contents of the sentence through a neural network of arbitrary architecture:

Ps = softmax( f Wp ,bp (vs)), (5.2)

where vs is the embedding vector of the sentence s, and f Wp ,bp (vs) models the output of the
network layers preceding the softmax layer, parameterized by Wp and bp and shared across
all sentences.

To model the attention weight as for each sentence, we use a Bidirectional LSTM (BiL-
STM) [169] to account for the sequential dependencies among sentences. Specifically, each
sentence vector is transformed into a hidden vector hs through BiLSTM:

hs = BiLSTM(vs). (5.3)

Then, the attention weight of a sentence is modeled through a fully-connected layer and a
softmax normalization:
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as = softmax(h0
s),h0

s = tanh(Wahs +ba). (5.4)

Finally, we model if a sentence can be viewed as a rationale for the document label as a binary
variable Æs 2 {0,1} that follows a Bernoulli distribution, parameterized by as :

Æs ª Ber (as). (5.5)

Integrating Labeling Rationales.

We represent worker reliability by r j 2 [0,1] where r j = 1 indicates that the worker is fully
reliable and r j = 0 otherwise. In practice, we would like to measure our confidence for an
estimate r j as dependent on the number of answers of worker j , i.e., the more annotations a
worker provides, the more confident we would like to be about her reliability estimate r j . To
quantify the confidence of our estimates, we adopt a Bayesian treatment of r j by modeling it
with a Beta distribution:

r j ª Bet a(m,n), (5.6)

where m and n are the parameters of the distribution.

We use the reliability of a worker to define the likelihood of her rationale being a true support
of the document label:

p(Bs, j |Æs ,r j ) = r
1[Æs=Bs, j ]

j (1° r j )1[Æs 6=Bs, j ], (5.7)

where 1[·] is an indicator function returning 1 if the statement is true and 0 otherwise.

Similarly, we use the reliability of a worker to define the likelihood of her provided label being
the true label:

p(Ai , j |zi ,r j ) = r
1[zi=Ai , j ]

j (1° r j )1[zi 6=Ai , j ]. (5.8)
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5.3.3 Variational Inference

Learning the parameters of MARTA resorts to maximizing the following likelihood function:

p(A,B) =
Z

p(A,B,z,r,Æ, |W ,V)dz,r,Æ, (5.9)

where z, r and Æ are latent variables, W represents the set of parameters of the model, i.e. W =
{Wa ,Wp }, and V is the embedding of all the sentences composing the documents. Since Eq.(5.9)
contains more than one latent variable, it is computationally infeasible to optimize [195].
Therefore, we consider the log of our likelihood function, i.e.,

log(p(A,B)) =
Z

q(z,r,Æ) log
p(A,B,z,r,Æ|W ,V)

q(z,r,Æ)
dz,r,Æ

| {z }
L (W ,q)

+
Z

q(z,r,Æ) log
q(z,r,Æ)

p(z,r,Æ|A,B,W ,V)
dz,r,Æ

| {z }
K L(q||p)

,

(5.10)

where q(z,r,Æ) is any probability density function and K L(·) is the KL divergence between
two distributions. By doing so, the two parts of the objective function can then be optimized
iteratively with a variational expectation-maximization method [195]. Specifically, we iterate
between two steps: 1) the E-step, where we approximate the latent variables p(z,r,Æ|A,B,W ,V)
with the variational distribution q(z,r,Æ), by minimizing the KL-divergence. 2) the M-step,
where we maximize the term L (W , q) given the newly inferred latent variables.

E step.

We use the mean field variational inference approach [26] by assuming that q(z,r,Æ) factorizes
over the latent variables.

q(z,r,Æ) =
Y

i
q(zi )

Y
s

q(Æs)
Y

j
q(r j ). (5.11)

To minimize the KL divergence, we choose following forms for the factor functions:

q(zi )=Ber (µi ); q(Æs)=Ber (as); q(r j )=Bet a(m j ,n j ), (5.12)

where µi , as , m j and n j are variational parameters used to minimize the KL divergence. The
latter can be minimized by updating one latent variable at a time and keeping all others fixed.
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In the following, we derive the updating rules for q(zi ), q(Æs) and q(r j ). To do so, we simplify
Eq.(5.10) and obtain for each latent variable the following inference equations:

q(zi )=
Y

s2Si , j2Ji

p(zi |vs ,W )gq(r j )(p(Ai , j |zi ,r j )),

q(Æs)=
Y

j2Js

p(Æs |vs ,Wa)gq(r j )(p(Bs, j |Æs ,r j )),

q(r j )=
Y

i2Ij ,s2S j

p(r j )gq(zi ,Æs )(p(Ai , j |zi ,r j )p(Bs, j |Æs ,r j )), (5.13)

where Si are the sentences in a document i . Ji and Js are the workers annotating document
i and those choosing sentence s as a rationale, respectively. Ij and S j are the documents
annotated by worker j and the sentences chosen by her as rationales, respectively. We use
gx (·) to denote the exponential of expectation term exp{Ex [log(·)]} with x being a variational
distribution. With the above equations, we obtain the updating rules for all latent variables.
We first give the updating rules of the document label zi and the sentence’s importance Æs by
the following lemmas.

Lemma 6 (Incremental Document Classification). The true label distribution q(zi ) can be
incrementally computed using the predicted label by the attention-based model µi , and the
parameters m j and n j of the worker reliability distribution r j .

q(zi = 1) /
(
µi

Q
j2Ji

exp{™(n j )°™(m j +n j )}, if Ai , j = 0,
µi

Q
j2Ji

exp{™(m j )°™(m j +n j )}, if Ai , j = 1,
(5.14)

where™ is the Digamma function. If q(zi = 0) then we replace µi by 1°µi .

Lemma 7 (Incremental Sentence Importance). The importance of a sentence for document
classification can be incrementally computed using the attributed attention weight by the
attention-based model as and the parameters m j and n j of the worker reliability distribution
r j .

q(Æs = 1) /
(

as
Q

j2Js
exp{™(n j )°™(m j +n j )}, if Bs, j = 0,

as
Q

j2Js
exp{™(m j )°™(m j +n j )}, if Bs, j = 1.

(5.15)

Next, we show the updating rule for the worker reliability q(r j ) with the following lemma.

Lemma 8 (Incremental Worker Reliability). The worker reliability distribution q(r j ) can be
incrementally computed using her annotation and rationale quality, and the reliability param-
eters m j and n j from the previous iteration.
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q(r j ) /
(

Bet a(m0
j+

P
s2S j

(1°as),n0
j+

P
s2S j

as), if Bs, j = 0,

Bet a(m0
j+

P
s2S j

as ,n0
j+

P
s2S j

(1°as)), if Bs, j = 1,
(5.16)

where m0
j=m j+

P
i2Ij

µi and n0
j=n j+

P
i2Ij

(1°µi ), if Ai , j=1 and m0
j=m j+

P
i2Ij

(1°µi ) and
n0

j=n j+
P

i2Ij
µi , if Ai , j=0.

We provide proofs for all lemmas in the appendix.

M step.

Given the true labels of the documents, the importance of sentences, and the worker reliability
inferred by the E-step, the M-step maximizes the first term of Eq.(5.10) to learn the parameters
W = {Wa ,Wp }.

L (W , q) =
Z

q(z,Æ,r ) log[p(A,B, z,Æ,r |V,W )]dr +C1

=
X
zi

q(zi ) log[p(zi |V;Wa ,Wp )]

| {z }
T1

+
X
Æs

q(Æs) log[p(Æs |vs ;Wa)]

| {z }
T2

+C1 +C2, (5.17)

where C1 = exp{Eq(z,Æ,r )[log(( 1
q(z,Æ,r ) )] is a constant and C2 are the terms that do not depend

on the parameters W . The term T1 is equivalent to the inverse of the cross entropy between
the target labels of a document q(zi ) and the predicted label p(zi |V;Wa ,Wp ). Similarly, the
term T2 is equivalent to the inverse of the cross entropy between the indication of a sentence
as a rationale and the predicted importance p(Æs |vs ;Wa). Given the shared parameter Wa , we
minimize the prediction loss T1 together with the loss T2.

5.3.4 Algorithm

The overall optimization algorithm is given in Algorithm 4. We initialize MARTA’s parameters
and iterate between an E step (rows 2-6) and an M-step (rows 7-8). The E-step consists of
updating the variational distribution of the document labels, the sentence importance and
the worker reliability. Our framework is semi-supervised in the sense that when ground
truth labels are available, we fix them in the E-step. The M steps consists in updating the
parameters of the attention-based model by jointly learning the document labels and the
sentence’s importance. It is worth noting that for this step, the loss between human rationales
and the attention generated by the model is minimized. The convergence is reached when
the documents label q(zi ) and the sentences relevance q(Æs) are no longer modified by the
workers’ reliability and the model’s parameters stabilize.

The iterations through the documents (rows 2-4) yields a time complexity of |I | while the
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Algorithm 4: Learning MARTA Parameters
Input :A,B,Si (8i 2I )
Output :Variational distributions: q(zi ), q(Æs) and q(r j )
Initialize :MARTA parameters: µi , m j , n j , W

1 while Eq. (5.10) has not converged do
2 for i 2I do
3 update q(zi ) using Lemma 6;
4 update q(Æs) using Lemma 7;

5 for j 2J do
6 update q(r j ) using Lemma 8;

7 for i 2I do
8 Update W ;

Dataset #Docs %Positive #Judgments #Workers
Wiki-Tech 1413 17.26% 4488 58
Amazon 400 50% 6744 449

Table 5.1: Datasets Description

iterations through the workers (rows 5-6) yields a time complexity of |J |. The overall complex-
ity of our algorithm is O(#i ter £ (|I |+ |J |+CW )), where #i ter is the number of iterations
needed to converge and CW is the complexity of learning the parameters W = {Wa ,Wp } of the
attention-based model.

5.4 Experiments

5.4.1 Experimental Setup

Datasets. We use two datasets for our experiments: Wiki-Tech and Amazon1. Wiki-Tech
contains 1413 Wikipedia articles with expert annotations on their relevance with respect to
the topic “technologies commonly used by companies”. We crowdsourced this dataset to
collect worker rationales. Amazon is developed and published by Ramirez et al. (2019) [157].
It contains 400 reviews with ground truth labels about “reviews written about books”; this
dataset is released with worker’s rationales. Key statistics about both datasets are reported in
Table 5.1.

Crowdsourcing Task. Worker annotations in Wiki-Tech were collected through a crowdsourc-
ing task that we published on Amazon Mechanical Turk2. We asked workers the following
predicate: Does the Wikipedia article describe a technology commonly used by companies?. We

1Source code and data are available at https://github.com/eXascaleInfolab/MARTA.
2https://www.mturk.com/
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Method
Wiki-Tech Amazon

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
MILNET 0.683 0.340 0.890 0.490 0.840 0.850 0.820 0.840
fastText 0.829 0.521 0.268 0.349 0.780 0.750 0.888 0.804
SciBERT 0.779 0.440 0.970 0.600 0.920 0.940 0.900 0.92
ALBERT 0.882* 0.708 0.560 0.618* 0.946 0.960* 0.932 0.946
LSTM-ortho 0.799 0.464 0.829 0.590 0.822 0.699 0.756 0.725
LSTM-diversity 0.649 0.365 0.928* 0.506 0.952* 0.960* 0.944 0.952*
InvRAT 0.717 0.220 0.210 0.230 0.720 0.750 0.720 0.710
RA-CNN 0.813 0.428 0.442 0.432 0.667 0.652 0.68 0.661
MARTA 0.886 0.660* 0.700 0.680 0.960 0.980 0.940* 0.960

Table 5.2: Performance (Accuracy, Precision, Recall and F1-score) comparison with baseline
methods. The best performance is highlighted in bold; the second best performance is marked
by ‘*’.

chose workers with a HIT approval rate above 70%. The task started by explaining the concept
of “Technology" and provided a positive and a negative example. Then, workers were asked to
annotate the article and provide a snippet from the text as a justification. Workers took on
average 1 minute to complete the task and were rewarded 16 cents per answer (we made sure
that we pay over 8USD per hour). The crowdsourcing task used to collect the Amazon dataset
consisted in asking workers: Is this review written on a book? The full experiment is described
in length in [157].

Representation Learning. The inputs of our machine learning model are the sentences from
the documents. We represent each sentence as a fixed-size vector vs by leveraging pre-trained
language models. We use SciBERT as pre-trained word embeddings for Wiki-Tech since the
language in Wikipedia is formal and contains scientific terms and ALBERT for Amazon as it
contains reviews with less formal language compared to the documents used to train SciBERT.
Considering the size of the datasets, we use a neural network with one fully-connected layer
for sentence-level label prediction (Eq. (5.2)).

Comparison Methods. We compare our approach to a wide range of baselines. First, we
compare against a set of recent text classification methods: 1) MILNET [7], a Multiple Instance
Learning (MIL) neural network model. 2) fastText [83], a linear model for text classification
that uses bags of n-grams as additional features to capture information about the local word
order. 3) SciBERT [20], a language model trained on scientific text consisting of scholar
papers from the computer science and biomedical domains. 4) ALBERT [103], a pre-trained
language model that takes into account the inter-sentence coherence, which allows to capture
fine-grained information in documents.

In addition, we compare against rational-aware models: 1) LSTM-ortho and LSTM-diversity,
both proposed in [132]. These methods extend an LSTM to learn diverse hidden representa-
tions at different time steps through an orthogonality and a diversity constraint for hidden
states. 2) InvRat [39], a game-theoretic approach that is designed to identify and remove
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Method Implementation
MILNET github.com/stangelid/oposum
fastText fasttext.cc/docs/en/supervised-tutorial.html
SciBERT github.com/allenai/scibert
ALBERT huggingface.co/transformers/model_doc/albert.html
LSTM github.com/akashkm99/Interpretable-Attention
InvRAT github.com/code-terminator/invariant_rationalization
RA-CNN github.com/yezhang-xiaofan/Rationale-CNN

Table 5.3: Methods Implementation

Method
Wiki-Tech Amazon

#epochs lr Batch Size Other #epochs lr Batch Size Other
MILNET 25 1e-3 50 - 20 1e-3 50 -
fastText 20 1 - N-gram = 5 20 9e-1 - N-gram = 5
SciBERT 75 1e-4 4 - 250 1e-7 8 -
ALBERT 10 1e-4 8 - 10 1e-4 8 -
LSTM-ortho 8 - 32 - 8 - 32 -
LSTM-diversity 8 - 32 diversity weight=0.5 8 - 32 diversity weight=0.5
InvRAT 20 1e-5 20 embedding dim=300 20 1e-4 20 embedding dim=300
RA-CNN 15 - 50 - 20 - 50 -
MARTA 20 1e-3 50 m j = 2.5,n j = 2 20 1e-3 50 m j = 2.5,n j = 2

Table 5.4: Choice of hyperparameters for baseline methods on the Wiki-Tech and Amazon
datasets. We use ‘-’ to denote if the hyperparameter is not applicable. ‘lr’ denotes the learning
rate and the value reported for m j and n j in MARTA, is the value used for initialization.

features with spurious correlation with the output. 3) RA-CNN [233], a sentence-level con-
volutional model that estimates the probability of a given sentence being a rationale. We
note that the LSTM variants (LSTM-ortho and LSTM-diversity) and InvRat generate rationales
automatically from the models, while RA-CNN uses the rationale provided by workers. In our
experiment, we use the sentences indicated by the majority of workers as rationales to train
RA-CNN.

Comparison Methods Implementation

In our experiments, we compare with text classification and rationale-aware methods. We use
the authors’ implementation for all methods except MILNET, for which we re-implemented
the original code in Python. Table 5.3 summarizes all methods implementations used in our
experiments. For each method, we tune the hyperparameters including the learning rate in
{0.00001,0.0001,0.001,0.01,0.1,1}, the batch size in {10,20,50,100} and the number of epochs in
{10,20,50,100,500}. For fastText, we also vary the word n-grams in [1,5]. For InvRat, we vary
the embedding dimension in {50,100,200,300}. We use the hyperparameters that led to the
optimal results on the validation set. We report the optimal settings in Table 5.4.
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Parameter Settings for MARTA

The parameters of our framework are empirically set. We search for the best architecture for
our attention-based model by applying a grid search in {10, 20, 50, 100} for the batch size and
in {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} for the learning rate. We also test different optimization
methods including stochastic gradient descent, ADAM and RMSprop. We initialize the priors
m j and n j by sampling from a uniform distribution [0,10] and update them in the E-step
according to Lemma 8. The optimal parameter settings we found through the validation set
are reported in Table 5.4.

Hardware and Software

For our framework, we used a Ubuntu 16.04 machine with 32 CPUs and 128GB RAM. For
experiments that required GPU, we used a Ubuntu 18.04 with 9 GPUs (1 TITAN V and 8
GeForce RTX 2080 Ti), 64 CPUs and 395GB RAM. In our code repository, we provide a file
(requirement.txt) that specifies the versions of all required libraries; this file can be used to
install them automatically.

Evaluation Protocol.

We split the datasets into training, validation, and test sets. We use 50% of the data for training
and the rest for validation and test with equal split. We report the average over 10 runs for
each method. Note that we only use worker’s annotations and rationales in the training and
validation sets. We use accuracy, precision, recall and F1-score over the positive class to
measure the performance. Higher values indicate better performance.

5.4.2 Results and Discussion

Table 5.2 summarizes the performance of MARTA against baseline methods on both Wiki-Tech
and Amazon.

First, we observe that ALBERT and SciBERT perform relatively well compared to the other
baseline methods, especially on the Wiki-Tech dataset. Recall that both ALBERT and SciBERT
leverage textual context for representation learning, which is useful in fine-grained classi-
fication tasks, such as Wiki-Tech where the model has to capture the relationship between
technologies and companies. Second, we observe that among the rationale-aware models, the
two LSTM variants, i.e., LSTM-ortho and LSTM-diversity, achieve the highest performance.
This confirms the advantage of attention mechanisms and shows the effectiveness of learning
non-redundant hidden states for model performance. We also observe that RA-CNN, which
uses human rationales, does not necessarily perform well. This is probably due to the way tex-
tual data is handled by RA-CNN: as opposed to the LSTM variants where the sequential order
in the textual data is modeled (with attention), the textual data is considered as independent
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(a) Microwave transmission is the transmission of information by microwave radio waves. Although an experimental 40-mile

(64 km) microwave telecommunication link across the English Channel was demonstrated in 1931, the development of radar in World War II

provided the technology for practical exploitation of microwave communication. In the 1950s, large transcontinental microwave relay networks,

consisting of chains of repeater stations linked by line-of-sight beams of microwaves were built in Europeand America to relay long distance

telephone tra�c and television programs between cities. Communication satellites which transferred data between ground stations by microwaves
took over much long distance traffic in the 1960s. In recent years, there has been an explosive increase in use of the microwave spectrum by
new telecommunication technologies such as wireless networks, and direct-broadcast satellites which broadcast television and radio directly into
consumers’ homes.

(b) In the Atom Station, Halldor Laxness demonstrates the skill and complexity that led to his being awarded the Nobel Prize in Literature.

The novel tells the story of a simple lass from the north of Iceland who comes face to face with the duplicity of politicians who sell out Icelandic
sovereignty for the sake of a nuclear station during the cold war. She also comes to some realizations about herself and the importance
of social class and knowledge and how these interact in today’s modern world. The novel will be of very special interest to those with

some knowledge of Iceland and its history. For those without such knowledge, the novel will compel you to learn more about this fascinating

country and its wonderful author laureate, Halldor Laxness.

Figure 5.3: Examples from the Wiki-Tech (a) and Amazon (b) datasets. Bold letters refer to the
weight attributed by an attention-based model. Italic letters indicate a rationale given by a
worker. The shades of green refer to the weights given by MARTA: a stronger shade means a
higher weight.

tokens by RA-CNN, which can lead to a loss of contextual meaning.

Most importantly, MARTA achieves the best performance in terms of accuracy and F1-score on
both datasets. Overall, it improves ALBERT by 0.97% accuracy and 5.76% F1-score and LSTM-
diversity by 18.68% accuracy and 17.61% F1-score on average on both datasets. To further
confirm that our way of integrating human rationales is effective, we conducted an ablation
study comparing MARTA to a simplified version with only the attention-based model (with
pre-trained sentence embeddings). Results show that MARTA improves the performance by
23% accuracy and 28% F1-score in the Wiki-Tech dataset and by 12.5% accuracy and F1-score
in the Amazon dataset. Such a result underlines the effectiveness of weighting the reliability of
human rationales when integrating them into attention-based models.

5.4.3 MARTA Properties

In addition to better classification performance, MARTA exhibits a number of properties highly
desirable in terms of accountability and deployment. In the following, we present some of
these properties.

Explainability. MARTA provides explanations to classification results by incorporating human
rationales. A comparison of the overlap between the rationales chosen by annotators and
those highlighted by MARTA shows a recall of 71.1% on the Wiki-Tech dataset and 61.3% on
the Amazon dataset, which is respectively 45.1% and 22.6% higher than the attention-based
model alone. The precision is 21.7% on Wiki-Tech and 27.0% on Amazon. These results are
due to the fact that MARTA typically tends to select multiple relevant sentences as a rationale,
while workers tend to select only one sentence. Figure 5.3 shows two examples from the test
sets of the Wiki-Tech and the Amazon datasets, respectively. The first example describes a
technology used by companies. The attention-based model attributes a high weight to the first
sentence (in bold), which defines the concept as a technology but not as used by companies.
In comparison, our framework attributes high weights to the last two sentences given as
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Figure 5.4: Performance of MARTA with varying s_deg .

rationales by workers (in italic), as they clearly show the relationship between the technology
and companies. In addition, MARTA attributes a high weight to the second sentence that
is relevant to the task. These results show that MARTA learns to generalize from human
rationales how to identify important sentences. We observe similar results in the example
from the Amazon dataset: our framework identifies both worker-provided rationales and other
relevant sentences for the task.

Adjustable Supervision Degree. Our framework is highly effective even with a relatively
small amount of ground truth labels for training. In what follows, we study the impact of
the supervision degree to determine the minimum amount of ground truth needed. We split
our datasets by sdeg where we vary sdeg between 10% and 90%, where sdeg = 50% means
that we use 50% of the ground truth labels for training. We compare with a variant of our
model with only the attention-based model described in the Method section. The results
are shown in Figure 5.4. We observe that the performance of our framework increases along
with the increase of sdeg on the Wiki-Tech data while it is overall stable for the Amazon data.
This shows that the amount of ground truth needed to train our framework varies across
tasks: compared with Amazon, Wiki-Tech is a more complex task that requires the model to
capture fine-grained information; consequently, it requires more labels in model training. We
observe that MARTA has better performance than the attention-based model starting from a
supervision degree of 30% on the Wiki-Tech dataset and 10% on the Amazon dataset. This on
one hand, confirms the effectiveness of integrating human rationales for model performance.
On the other hand, the fact that a small proportion of labels (less than 30%) does not help to
improve model performance on the Wiki-Tech dataset indicates that when the task is complex,
a small proportion of ground truth labels might not be sufficient to correctly identify the
workers’ reliability, and that the benefits of having the labels might be over-weighted by the
disadvantage of the extra parameters to be learned in that case.

In addition, we measure the performance variation across 10 runs with different data split
for each s_deg . The results are shown in Figure 5.4, where the standard deviation is 0.023
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and 0.011 on average on Wiki-Tech and Amazon, respectively. The standard deviation is small
compared to the absolute accuracy which demonstrates MARTA’s robustness.

5.5 Limitations and Future Work

The main limitation of our technique consists in two assumptions. The first one assumes
that a rationale given by a worker can be directly extracted from text. While this assumption
is valid in our context, there are applications where the rationale is expressed in a syntax
different from the original text. For example, in [125], the rationale is expressed as reasoning.
We also assume that a document is composed of many sentences, and that the sentences have
different levels of importance. In case the document is short (1-3 sentences), the importance
of the sentences does not vary a lot, and hence the attention scores assigned by our framework
are almost all equal. In future work, we plan to represent the workers’ rationales by embedding
and leverage the similarity between the rationale and the original text to derive the sentence’s
importance. Using embedding to represent rationales would allow us to capture the worker
reliability on different topics. We also plan to leverage the rationales generated through our
framework to learn other domains’ rationale through transfer learning.

5.6 Conclusion

In this chapter, we presented MARTA, a Bayesian framework leveraging human rationales to
improve the performance of attention-based models and provide a human-understandable ex-
planation of classification results. Our proposed method incrementally updates the attention
distribution by learning from human rationales while taking into account the workers’ relia-
bility. Extensive validation on two real-world datasets shows that MARTA is an effective and
robust framework that substantially outperforms state-of-the-art methods while providing
better, human-understandable explanations.

In the next chapter, we conclude our thesis by summarizing the main findings and contri-
butions of our proposed methods. Then, based on them, we discuss ways to extend our
frameworks and define future research directions.
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6 Conclusions

In this thesis, we focused on the problem of open-ended data curation while considering
humans’ contribution. We developed human-AI collaborative approaches that integrate
machine learning with human computation such that their learning processes benefit from
each other. We tackled the problem from different aspects, such as cleaning and evaluating
open-ended answers and injecting them into a model’s learning to improve its explainability.
Each of these aspects is discussed in a separate chapter of the thesis. In this chapter, we
summarize the main contributions and define future research directions.

6.1 Summary

We started by tackling the problem of open-ended answers aggregation in Chapter 3. This
problem is particularly challenging in crowdsourcing, where workers provide their answers as
free text. In addition to being prone to errors, workers’ open-ended answers are sparse and
positive-only. These properties contrast with the conventional crowdsourcing setting, where
worker’s answers are binary or categorical and the overlap between them is sufficient to infer
the truth.

To address this problem, we developed a human-AI collaborative approach that integrates
machine learning and crowdsourcing for aggregating open-ended answers. In our framework,
we cope with the sparsity and positive-only properties of open-ended answers by combining
two strategies: 1) training a machine learning model on the answer’s features and worker’s
reliability to infer the truth for unseen data, and 2) using random negative sampling to assign a
random set of answers as workers’ negative answers. More specifically, our approach consists
of a Bayesian framework that learns a feature-based model for the answers’ quality and the
crowd workers’ reliability. We use variational inference, where we model the answer’s quality
as a discrete variable and the worker’s reliability as a continuous variable. We iterate between
updating the parameters of our probabilistic model and those of a machine learning model
such that their learning processes benefit from each other. Experimental results show that our
framework substantially improves the state of the art by 11.5% AUC.
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In an effort to improve the evaluation of open-ended answers, we designed in Chapter 4 a
framework for peer grading peer reviews where the open-ended answers are, in this context,
the scholarly reviews. In this work, we estimate the conformity of scholarly reviews concerning
conference standards. This problem is challenging because the task is complex and requires
assessing reviews from many dimensions. In addition, fairness is crucial in such a high stake
domain, and therefore, uncertain cases should be handled cautiously.

To tackle this problem, we proposed a human-AI approach that estimates the conformity of
reviews to the conference standards. Our approach is based on active learning, where we
designed a multi-input network that takes both the review’s textual content and statistical
features to estimate its conformity, and used peer grading for the reviews where the model’s
prediction is most uncertain. We developed a Bayesian framework for the selected graded
reviews to estimate the grader’s reliability and bias while updating the model’s parameters and
conformity estimation. Similar to OpenCrowd, our method is based on variational inference,
where we incrementally update both model parameters and graders’ reliability at each iter-
ation. The framework’s design differs from OpenCrowd as we model the review conformity
with a continuous variable ands the grader’s bias in addition to her reliability. These design
choices allow us to handle the task’s complexity while ensuring fairness in handling uncertain
cases. Overall, our framework infers the conformity of reviews from the peer grading process,
historical reviews, and conference decisions while considering grading reliability and bias. Our
approach helps meta-reviewers identify reviews that require clarification while not inducing
additional overhead from reviewers. Through a large-scale crowdsourced study where crowd
workers are recruited as graders, we show that the proposed approach outperforms existing
methods by 11.6% accuracy. Moreover, our method exhibit improvement over subsequent
editions of the same conference, a property highly desirable in real-world scenarios with the
increase in the number of submissions and consequently the number of reviews.

Finally, we turned our focus to explainability in AI. In Chapter 5, we improve the explainability
of text classification methods that rely on a specific machine learning mechanism: attention.
Although they supposedly provide an explanation through an attention distribution that
reflects the importance of input units, end-users often consider these methods as black boxes
because their explanation differs from human rationale.

We address this problem with a framework named "MARTA" for explainable text classification.
Our framework is a human-AI hybrid system that seamlessly incorporates human rationale
into an attention-based model by using them to guide the learning of their distribution. In this
work, we ask workers to provide rationales for their annotation by selecting relevant pieces of
text. Similarly to the other frameworks, we use variational inference to update a probabilistic
model’s parameters and an attention-based model. Nonetheless, MARTA substantially differs
from the previous frameworks as we update the model’s result and intrinsic learning process
by modifying the attention distribution based on the human rationale. Through experiments,
we showed that such an approach boosts the explainability and the classification performance
of an attention-based model.
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6.2 Future Work

This thesis contributed novel frameworks for open-ended answers curation from several im-
portant aspects. There are different ways to extend and improve the proposed methodologies.
In this section, we outline future research directions for open-ended data curation with crowd-
sourcing. In addition, we discuss the challenges and research opportunities that we believe
could enhance the broad field of data curation.

6.2.1 Research Directions for Open-ended Data Curation with Crowdsourcing

Merging Open-ended Answers

In Chapter 3, we developed a solution for open-ended answers aggregation using annotators’
reliability and answers’ features to identify high quality answers. Our solution performs well
for filtering open-ended answers in tasks such as data enumeration (e.g., collection of social
influencers names) and extracting text spans (e.g., rationale extraction). Other types of open-
ended tasks such as text translation or audio transcription might require merging workers’
answer into one solution in case the best answer is a combination of all collected answers.
There are some ongoing efforts to develop such a solution. For instance, in the very large
database conference (VLDB) 2021, a crowd science contest [199] was organized by Toloka
to aggregate multiple audio transcriptions into a single high-quality transcription, and the
winning solution used an extractive text summarization method. Such a solution provides a
first step towards merging open-ended answers, however it omits workers’ modeling, which
could lead to incoherent answers. Open research questions to be addressed in this context
include: 1) how to model worker’s style in writing open-ended answers; 2) how to integrate
workers’ modeling in answers merging; 3) how to ensure consistency and coherence of the
merged solution when using multiple answers. To deepen our understanding of open-ended
answers’ aggregation, one can investigate how individuals collaborate in writing, how they
split roles and how they combine different contributions and correct mistakes.

Build a Competent Crowd

In the thesis, workers complete complex tasks relying mainly on their background knowledge
with little training. It would be valuable to investigate workers’ learning curve and how their
performance improve over time. We foresee two main challenges: First, how to identify a
trade-off between the cost, the learning time, and the quality of answers. In fact, workers
invest time in learning which should be rewarded, although they do not contribute yet to the
task at hand. Nonetheless, the better workers understand the task, the more likely the answers’
quality improve. Second, how to adapt the task to the workers’ learning speed. Workers
have different background, level of expertise and learning curves, which implies that their
improvement over time depends on how well the task is adapted to them. To address this
problem, we could draw inspiration from e-learning and teaching techniques [154, 222] and
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investigate how to treat workers as students to learn the task incrementally by increasing the
difficulty level and correcting their mistakes each time.

Modeling Workers’ Performance with Time Series

In our work, workers’ reliability is represented as a variable dependent on the quality of her
answers or on the task’s difficulty. Up until now, we did not investigate the temporal dimension
in workers’ performance, which has important applications in sequential labeling tasks where
the annotation of one task can affect the interpretation of subsequent ones. Open research
questions to address include: 1) how to model worker’s performance over time; 2) what
external factors impact workers’ performance over time and how to take them into account; 3)
how to measure inter-worker agreement in time-dependent tasks. To tackle these questions,
we could investigate time series techniques to model workers performance and analyze their
patterns to derive inter-workers’ agreement and infer the truth.

Mapping Human Reasoning to Model Learning

In Chapter 5, we developed a solution to align the attention distribution of an attention-based
model with a human’s explanation. While our solution improves model’s performance and
explanation, it assumes a one-to-one mapping between model learning and human’s under-
standing. Such an assumption sums up the models’ learning to quantifying the importance of
input units in the model’s results. While such an approach allows end-users to see the impact
of certain data instances on the model’s performance, it does not reflect what the model has
learned and missed. Future work could investigate data propagation in model learning and
map it to logic rules understandable by end-users. Another direction could be exploring ways
to rectify the model’s learning such that it follows human reasoning. We foresee as a main
challenge the feasibility of mapping model learning to logic rules. Model’s learning can be
barely traced in small neural networks and it is almost impossible to fully understand the
model’s parameters update in large models with millions of parameters. One way to proceed
could be to use a logic rule-based approach [156, 234] as a translator between a neural network
and humans. Such an approach would allow to check if the models had assimilated all patterns
needed to perform correctly the task.

6.2.2 Research Directions for Data Curation

Weak supervision for Sequence labeling

In our work, the main source of labeling are workers in crowdsourcing platforms with different
levels of reliability. In some circumstances, cost is an issue and instead of relying on manual
labor, developers/researchers might choose to use other weak sources such as gazetteers,
pre-trained models and heuristic functions. Depending on the data instance, some sources are
more reliable than others. A future direction could draw inspiration from the crowdsourcing
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domain and treat weak sources as workers with different levels of reliability and model the
confusion of a weak source as dependent on both its annotation and the input sequence. Such
a solution could be applied for sequence labeling tasks such as entity recognition, part-of-
speech tagging and phrase extraction.

Taxonomy Enrichment

Taxonomies are a particular type of knowledge graph in which concepts are organized in a tree-
like structure and connected through an "is-a" relation. They are widely used in e-commerce,
web search, and scientific domains. These taxonomies are usually curated manually by
experts. With the emergence of new concepts, they have to be constantly updated. Several
methods [173, 228, 123] have been proposed to address this taxonomy expansion problem.
Many of them simplify the problem to a hypernym finding problem. Such a mapping does
not take into account the semantic similarity between concepts and the hierarchical structure
of the taxonomy. Open research questions to tackle include: 1) how to define the semantic
similarity between concepts as reflective of their distance in the taxonomy; 2) How to establish
hierarchical relationships between concepts that share similar semantic meaning; 3) How to
rectify taxonomies’ inner structure after the emergence of new concepts. One way to proceed
is to map the problem to a semantic search problem where, given a query and a corpus, we
identify the closest concept from the corpus close to the query. There are many efforts in this
direction, mainly applied in question-answering systems. The mapping should consider the
hierarchical structure of the taxonomy and the distance between nodes in the taxonomy.

In this section, we summarized our work and went through some future directions that could
use the developed methodologies within this thesis as a foundation to build interpretable
methods. We contributed to the human-AI field by proposing systems where the interaction
between the human computation and the AI model is bidirectional, which was fundamental to
ensure the effectiveness of the human-AI team. In establishing such collaborative systems, we
paved the way for better collaboration between artificial intelligence and human computation
for open-ended data curation.
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A Appendix

A.1 Proofs for Chapter Peer Grading the Peer Reviews: A Dual-Role
Approach for Lightening the Scholarly Paper Review Process

We apply the same notational conventions as in Chapter 4. We use the symbol / to denote
that two variables are proportionally related.

A.1.1 Proof of Lemma Incremental Update for Review Conformity

Proof. To minimize the KL divergence, we assume the variational distribution follows the
same distribution as the latent variable [195]. For q(zi ), we obtain

q(zi ) / hq(rg ,bg )[p(zi ,r,b,Ai ,§,W )], (A.1)

where hq(rg ,bg ) denotes the exponential of expectation exp{Ex [log(·)]} with x being a variational
distribution. According to the mean field approximation, the probability p(zi ,r,b,Ai ,§,W )
factorizes over Gi and Eq.(A.19) can be written as:

q(zi ) /
Y

g2Gi

hq(rg ,bg )[p(zi ,rg ,bg ,Ar,g ,W )]. (A.2)

where Gi represents the graders relevant to a review i . By applying the chain rule on the
probability p(zi ,r,b,Ai ,§,W ) and keeping only the terms that depend on zi , we get:

q(zi ) / p(zi |xi ,W )
Y

g2Gi

hq(rg ,bg )[p(Ar,g |zi ,rg ,bg )]
| {z }

T1

(A.3)

The term T1 can be expressed using the probability density function of a Gaussian distribution
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of p(Ar,g |zi ,rg ,bg ) where the logarithm of the Gaussian distribution is given by

log(N (zi +bg ,
1

rg
) / 1

2
logrg °

rg

2
(Ai ,g ° zi °bg )2 (A.4)

Then, we keep the terms dependent on zi and apply Erg ,bg :

Erg ,bg [log(N (zi +bg ,
1

rg
)]/Erg ,bg [

rg

2
]£Erg ,bg [(Ai ,g ° zi °bg )2] (A.5)

We expand the second term by the square factor and get:

(Ai ,g ° zi °bg )2 =A2
i ,g + z2

i +b2
g +2zi bg °2Ai ,g zi °2Ai ,g bg (A.6)

We eliminate the terms independent from zi and apply Erg ,bg :

Erg ,bg [(Ai ,g ° zi °bg )2] = Erg ,bg [z2
i ]+2Erg ,bg [zi ]Erg ,bg [bg ]

°2Erg ,bg [Ai ,g ]Erg ,bg [zi ] (A.7)

Using the properties of bg distribution and since Ai ,g and zi do not depend on bg , the terms
in Eq.(A.7) are expressed as follows:

Ebg [Ai ,g ] =Ai ,g ,Ebg [z2
i ] = z2

i ,Ebg [zi ] = zi ,Ebg [bg ] = mg (A.8)

The first term in Eq.(A.5) is the mean of rg ’s distribution, i.e.,
Ag

Bg
. We replace the second term

by the expressions in Eqs.(A.7)-(A.8):

Erg ,bg [log(N (zi +bg ,
1

rg
)]/

Ag

2Bg
£(z2

i +2zi (mg °Ai ,g )) (A.9)

We now replace in Eq.(A.3) p(zi |xi ,W ) by the probability density function of zi and the term
T1 by its simplification in Eq.(A.9).

q(zi ) /N (µi ,æi )
Y

g2Gi

exp{
Ag

2Bg
£(z2

i +2zi (mg °Ai ,g ))}

/ exp{
°1
2

[(
X
g

Ag

Bg
+ 1

æ2
i

)z2
i °2(

X
g

Ag

Bg
(Ai ,g °mg )+ µi

æ2
i

)]zi }

/N (
W
V

,
1
V

),

where W =P
g

Ag

Bg
(Ai ,g °mg )+ µi

æ2
i

and V = (
P

g
Ag

Bg
+ 1
æ2

i
), which concludes the proof.
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A.1.2 Proof of Lemma Incremental Update for Grader Reliability

Proof. Following the reasoning in Eq.(A.19)-(A.3) for rg , we get:

q(rg ) / p(rg |Ag ,Bg )
Y

i2Ig

hq(zi ,bg )[p(Ar,g |zi ,rg ,bg )]
| {z }

T2

(A.10)

To incrementally update the grader reliability, we simplify the term T2 in Eq.(A.10). First, we
use Eq.(A.6) to expand the term (Ai ,g ° zi °bg )2 and apply the expectation Ezi ,bg (·). Then,
using the properties of the Gaussian distribution of zi and bg , we get:

Ezi ,bg [zi ]=µi ,Ezi ,bg [z2
i ]=æ2

i ,Ezi ,bg [bg ]=mg ,Ezi ,bg [b2
g ]= 1

Æg
(A.11)

The term Ezi ,bg [(Ai ,g ° zi °bg )2] can be simplified using the expressions in Eq.(A.11). We
denote the simplification with Mi

Mi =A2
i ,g +æ2

i +
1
Æg

+2(µi mg °Ai ,gµi °Ai ,g mg ) (A.12)

The expectation of Eq.(A.4) conditioned on zi and bg can be simplified using Eq.(A.12):

Ezi ,bg [log(N (zi +bg ,
1

rg
)] / 1

2
logrg °

rg

2
Mi (A.13)

Now, we can replace the term T2 in Eq.(A.10) by its expression in Eq.(A.13) and the probability
p(rg |Ag ,Bg ) by its density function.

q(rg ) / °(Ag ,Bg )
Y

i2Ig

exp{
1
2

logrg °
rg

2
Mi }

/ 1
°(Ag )

B
Ag
g r

Ag+
|Ig |

2 °1
g exp{°(bg +

1
2

X

i2Ig

Mi )rg }

/Gamma(X ,Y )

where X = Ag+
|Ig |

2 and Y = Bg+1
2 (

|Ig |
Æg

+P
i [A2

i ,g +æ2
i +2µi (mg °Ai ,g )°2Ai ,g mg ]) which

concludes the proof.

A.1.3 Proof of Lemma Incremental Update for Grader Bias

Proof. Following the reasoning in Eq.(A.19)-(A.3) for bg , we get:

q(bg ) / p(bg |mg ,Æg )
Y

i2Ig

hq(zi ,rg )[p(Ar,g |zi ,rg ,bg )]
| {z }

T3

(A.14)
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To incrementally update worker’s bias, we simplify the term T3 in Eq.(A.14). In order to do
that, we use Eq.(A.6) to expand the term (Ai ,g ° zi °bg )2 and apply the expectation Ezi ,rg (·).
Then, we use the properties of the Gaussian distribution of zi and the independence property
of bg with respect to zi and rg and get:

Ezi ,rg [zi ] =µi ,Ezi ,rg [z2
i ] =æ2

i ,Ezi ,rg [bg ] = bg ,Ezi ,rg [b2
g ] = b2

g (A.15)

Using the expressions in Eq.(A.15) and by eliminating the terms that do not depend on b j , the
expectation Ezi ,bg [(Ai ,g ° zi °bg )2] can be simplified as follows.

Ezi ,bg [(Ai ,g ° zi °bg )2] = b2
g +2(µi °Ai ,g )bg (A.16)

The expectation term Ezi ,rg [log(N (zi + rg , 1
rg

)] is given by:

Ezi ,rg [log(N (zi + rg ,
1

rg
)] /°

Ag

2Bg
(b2

g +2(µi °Ai ,g )bg ), (A.17)

where
Ag

Bg
is the mean of the reliability density function. We can now replace the term T3

in Eq.(A.14) by its expression in Eq.(A.17) and the probability p(bg |mg ,Æg ) by its density
function.

q(bg ) /N (mg ,bg )
Y

i2Ig

exp{°
Ag

2Bg
(b2

g +2(µi °Ai ,g )bg ))}

/ exp(°1
2

((
Ag |Ig |

bg
+Æg )b2

g °2[Æg mg +
Ag

bg

X

i
(Ai , j °µi )]bg ))

/N (
L
K

,
1
K

)

where K = Ag |Ig |
Bg

+Æg and L =Æg mg +
Ag

Bg

P
r (Ai ,g °µi ) which concludes the proof.

A.2 Proofs for Chapter MARTA: Leveraging Human Rationales for
Explainable Text Classification

In this section, we present the proofs of our lemmas in Chapter 5. We use the same notational
conventions as in the chapter.

A.2.1 Proof of Lemma Incremental Document Classification

The true label distribution q(zi ) can be incrementally computed using the predicted label
by the attention-based model µi , and the parameters m j and n j of the worker reliability
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distribution r j .

q(zi = 1) /
(
µi

Q
j2Ji

exp{™(n j )°™(m j +n j )}, if Ai , j = 0,
µi

Q
j2Ji

exp{™(m j )°™(m j +n j )}, if Ai , j = 1,
(A.18)

where™ is the Digamma function. If q(zi = 0), then we replace µi by 1°µi .

Proof. To minimize the KL divergence, we assume the variational distribution follows the
same distribution as the latent variable [195]. For q(zi ), we obtain Eq.(A.19).

q(zi ) / gq(r j ,Æs )[p(zi ,r,Æ,Ai ,§,B,W )], (A.19)

where, we use gx (·) to denote the exponential of expectation term exp{Ex [log(·)]} with x being
a variational distribution and x / y to denote that the two variables x and y are proportionally
related (i.e., x = k y , where k is a constant). According to the mean field approximation, the
probability p(zi ,r,Æ,Ai ,§,B,W ) factorizes over Si and Ji and Eq.(A.19) can be written as
Eq.(A.20).

q(zi ) / gq(r j ,Æs )[
Y

s2Si , j2Ji

p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W )], (A.20)

where Si and Ji represent respectively the sentences and the workers relevant to document i .
Using the properties of the exponential and the logarithm functions in gx (·), we get Eq.(A.21):

q(zi ) /
Y

s2Si , j2Ji

gq(r j ,Æs )[p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W )]. (A.21)

By applying the chain rule on p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W ), we obtain Eq.(A.22).

p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W ) = p(Ai , j |zi ,r j )£p(Bs, j |r j ,Æs)

£p(zi |vs ,W )£p(r j |m j ,n j )

£p(Æs |vs ,Wa). (A.22)

Next we replace the probability in Eq.(A.21) by the chain rule and keep only the terms that
depend on zi , we get Eq.(A.23).

q(zi ) /
Y

s2Si , j2Ji

gq(r j ,Æs )[p(zi |vs ,W )p(Ai , j |zi ,r j )]. (A.23)

As the probability p(zi |vs ,W ) is independent from p(Ai , j |zi ,r j ), we get the following:

q(zi ) /
Y

s2Si , j2Ji

gq(r j ,Æs )[p(zi |vs ,W )]gq(r j ,Æs )[p(Ai , j |zi ,r j )]. (A.24)

Since the probability of zi does not depend on r j and Æs , we can simplify Eq.(A.24) to the
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following:

q(zi ) /
Y

s2Si , j2Ji

p(zi |vs ,W )gq(r j ,Æs )[p(Ai , j |zi ,r j )]

/
Y

s2Si

p(zi |vs ,W )
Y

j2Ji

gq(r j )[p(Ai , j |zi ,r j )]

/ p(zi |V,W )
Y

j2Ji

gq(r j )[p(Ai , j |zi ,r j )]. (A.25)

We show the proof only for zi = 1 since the proof for zi = 0 follow similarly. Using the definition
of q(zi ), we have Eq.(A.26):

p(zi = 1|V,W ) = µi . (A.26)

We substitute the probability p(zi |V,W ) and p(Ai , j |zi ,r j ) by their respective definitions in
Eq.(A.26) and Eq.(8) from Section Method:

q(zi = 1) /
(
µi

Q
j2Ji

gq(r j )[1° r j ], if Ai , j = 0,
µi

Q
j2Ji

gq(r j )[r j ], if Ai , j = 1.
(A.27)

By computing the geometric mean of the beta distribution, we can evaluate the exponential
terms gq(r j )[·] as follows:

gq(r j )[1° r j ] = exp{™(n j )°™(m j +n j )},

gq(r j )[r j ] = exp{™(m j )°™(m j +n j )}. (A.28)

Putting (A.28) into (A.27), the update equation can be simplified:

q(zi = 1) /
(
µi

Q
j2Ji

exp{™(n j )°™(m j +n j )}, if Ai , j = 0,
µi

Q
j2Ji

exp{™(m j )°™(m j +n j )}, if Ai , j = 1,
(A.29)

which concludes the proof.

A.2.2 Proof of Lemma Incremental Sentence Importance

The importance of a sentence for document classification can be incrementally computed
using the attributed attention weight by the attention-based model as and the parameters m j

and n j of the worker reliability distribution r j .

q(Æs = 1) /
(

as
Q

j2Js
exp{™(n j )°™(m j +n j )}, if Bs, j = 0,

as
Q

j2Js
exp{™(m j )°™(m j +n j )}, if Bs, j = 1.

(A.30)

Proof. Similarly to Eq.(A.19), we assume the variational distribution q(Æs) follows the same
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distribution as the latent variable Æs . We obtain Eq.(A.31):

q(Æs) / gq(r j ,zi )[p(z,r,Æs ,A,Bs,§,W )]. (A.31)

Using the mean field approximation, the probability p(z,r,Æs ,A,Bs,§,W ) factorizes as follows:

q(Æs) / gq(r j ,zi )[
Y

j2Js ,i2Is

p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W )], (A.32)

where Js and Is represent the workers and the documents relevant to sentence s. Using the
properties of the exponential and logarithm functions, we get:

q(Æs) /
Y

j2Js ,i2Is

gq(r j ,zi )[p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W )]. (A.33)

By applying the chain rule of Eq.(A.22) and keeping only the terms that depend onÆs , Eq.(A.33)
is simplified as follows:

q(Æs)=
Y

j2Js

gq(r j )(p(Æs |vs ,Wa)p(Bs, j |Æs ,r j )). (A.34)

Since Æs does not depend on r j , we get:

q(Æs)=p(Æs |vs ,Wa)
Y

j2Js

gq(r j )[p(Bs, j |Æs ,r j )]. (A.35)

Here as well, we show the proof for Æs = 1, as the proof for Æs = 0 follows similarly. Using the
definition of Æs , we get:

p(Æs = 1|vs ,Wa) = as . (A.36)

Using the definition of p(Æs = 1|vs ,Wa) in Eq.(A.36) and the definition of p(Bs, j |Æs ,r j ) from
Section Method Eq.(7), we get the following:

q(Æs = 1) /
(

as
Q

j2Js
gq(r j )[1° r j ], if Bs, j = 0,

as
Q

j2Js
gq(r j )[r j ], if Bs, j = 1.

(A.37)

We replace in Eq.(A.37), gq(r j )[1° r j ] and gq(r j )[r j ] by the expressions given in Eq.(A.28):

q(Æs = 1) /
(

as
Q

j2Js
exp{™(n j )°™(m j +n j )}, if Bs, j = 0,

as
Q

j2Js
exp{™(m j )°™(m j +n j )}, if Bs, j = 1,

(A.38)

which concludes the proof.
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A.2.3 Proof of Lemma Incremental Worker Reliability

The worker reliability distribution q(r j ) can be incrementally computed using her annotation
and rationale quality, and the reliability parameters m j and n j from the previous iteration.

q(r j ) /
(

Bet a(m0
j+

P
s2S j

(1°as), (n0
j+

P
s2S j

as), if Bs, j = 0,

Bet a(m0
j+

P
s2S j

as ,n0
j+

P
s2S j

(1°as)), if Bs, j = 1,
(A.39)

where m0
j=m j+

P
i2Ij

µi and n0
j=n j+

P
i2Ij

(1°µi ), if Ai , j = 1 and m0
j=m j+

P
i2Ij

(1°µi ) and
n0

j=n j+
P

i2Ij
µi , if Ai , j = 0.

Proof. We assume the variational distribution q(r j ) follows the same distribution as the latent
variable r j which translates to Eq.(A.40).

q(r j ) / gq(zi ,Æs )[p(z,r j ,Æ,A§, j ,B§, j ,W )]. (A.40)

Using the mean field approximation, the probability p(z,r j ,Æ,A§, j ,B§, j ,W ) factorizes over
|Ij | and |S j | representing respectively the documents and the sentences relevant to worker j .

q(r j ) / gq(zi ,Æs )[
Y

i2Ij ,s2S j

p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W )]. (A.41)

Using the properties of the exponential and logarithm, we get:

q(r j ) /
Y

i2Ij ,s2S j

gq(zi ,Æs )[p(zi ,r j ,Æs ,Ai , j ,Bs, j ,W )]. (A.42)

By applying the chain rule in Eq.(A.22) and keeping only the terms that depend on r j , we get:

q(r j )/
Y

i2Ij ,s2S j

gq(zi ,Æs )[p(r j |m j ,n j )p(Ai , j |zi ,r j )p(Bs, j |r j ,Æs)] (A.43)

Since the probability p(r j |m j ,n j ) does not depend on zi and Æs , we can simplify Eq.(A.43) to
the following:

q(r j )/p(r j |m j ,n j )£
Y

i2Ij ,s2S j

gq(zi ,Æs )[p(Ai , j |zi ,r j )p(Bs, j |r j ,Æs)] (A.44)

By replacing the exponential of expectation term gx (·) by its expression, we can simplify the
term gq(zi ,Æs )[p(Ai , j |zi ,r j )p(Bs, j |r j ,Æs)] as follows:

gq(zi ,Æs )[p(Ai , j |zi ,r j )p(Bs, j |r j ,Æs)]=exp{Eq(zi ,Æs )[log(p(Ai , j |zi ,r j )p(Bs, j |r j ,Æs))]}

=exp{Eq(zi ,Æs )[log(p(Ai , j |zi ,r j ))+ log(p(Bs, j |r j ,Æs))]}

=exp{Eq(zi )[log(p(Ai , j |zi ,r j ))]+Eq(Æs )[log(p(Bs, j |r j ,Æs))]}

=gq(zi )[p(Ai , j |zi ,r j ))]£ gq(Æs )[p(Bs, j |r j ,Æs)] (A.45)
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We distinguish two main cases depending on the values of Ai , j 2 {0,1}. Let’s start with the
case where Ai , j = 1. This case covers all documents i a worker j has annotated as positive. In
such a case, the probability p(Ai , j |zi ,r j ) can be written as a function of µi and r j as given by
eq.(A.46):

gq(zi )[p(Ai , j = 1|zi ,r j ) = r µi
j (1° r j )(1°µi ) (A.46)

The documents annotated as positive by worker j include two sets of sentences: a set of
sentences annotated as rationales, where Bs, j = 1, and a set of non-rationales where Bs, j = 0.
The probability p(Bs, j |r j ,Æs) is simplified as follows:

gq(Æs )[p(Bs, j |r j ,Æs)] /
(

r as
j (1° r j )(1°as ), if Bs, j = 1,

r (1°as )
j (1° r j )as , if Bs, j = 0,

(A.47)

If we take the case of Bs, j = 1, by putting (A.46) and (A.47) in (A.43), we get:

q(r j )/p(r j |m j ,n j )
Y

i2Ij ,s2S j

r µi+as
j (1° r j )(1°µi+1°as ) (A.48)

The probability p(r j |m j ,n j ) is a beta distribution and hence its probability density function is
given by Eq.(A.49).

p(r j |m j ,n j ) = Bet a(m j ,n j )

= r
(m j°1)
j (1° r j )(n j°1) (A.49)

By substituting the probability p(r j |m j ,n j ) by its expression in Eq.(A.49), we get the following
result:

q(r j )/r
(m j°1)
j (1° r j )(n j°1) £

Y

i2Ij ,s2S j

r µi+as
j (1° r j )(1°µi+1°as )

/r
m j°1+P

i2Ij
µi+

P
s2S j

as

j £ (1° r j )(n j°1+P
i2Ij

(1°µi )+P
s2S j

(1°as )) (A.50)

Similarly for Bs, j = 0, by putting (A.46), (A.47) and (A.49) in (A.44), we get:

q(r j )/r
(m j°1)
j (1° r j )(n j°1) £

Y

i2Ij ,s2S j

r µi+1°as
j (1° r j )(1°µi+as )

/r
m j°1+P

i2Ij
µi+

P
s2S j

(1°as )

j £ (1° r j )(n j°1+P
i2Ij

(1°µi )+P
s2S j

as ) (A.51)

Using Eq.(A.48) and Eq.(A.51), we get the updating rules for when the documents are labeled
as positive by a worker, i.e., Ai , j = 1:

q(r j ) /

8
<
:

r
m j°1+P

i µi+
P

s as

j (1° r j )(n j°1+P
i (1°µi )+P

s (1°as )), if Ai , j=Bs, j ,

r
(m j°1+P

i µi+
P

s (1°as ))
j (1° r j )(n j°1+P

i (1°µi )+P
s as ), if Ai , j 6=Bs, j ,

(A.52)
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where the documents i and sentences s are relevant to worker j , i.e., i 2Ij and s 2S j . For
the second case, where Ai , j = 0, the term gq(zi )[p(Ai , j |zi ,r j ) can be written as a function of µi

and r j as given by eq.(A.53):

gq(zi )[p(Ai , j = 0|zi ,r j )] = r (1°µi )
j (1° r j )µi (A.53)

Using the same reasoning of distinguishing the two cases Bs, j = 0 and Bs, j = 1 and then
replacing the probability p(r j |m j ,n j ) by its probability density function, we get the following
results:

q(r j ) /

8
<
:

r
(m j°1+P

i (1°µi )+P
s (1°as ))

j (1° r j )(n j°1+P
i µi+

P
s as ), if Ai , j=Bs, j ,

r
m j°1+P

i (1°µi )+P
s as

j (1° r j )(n j°1+P
i µi+

P
s (1°as )), if Ai , j 6=Bs, j ,

(A.54)

which concludes the proof.
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